In a continuing study of proteolysis of CNS proteins by CNS enzymes, neurofilament proteins (210 K, 155 K, 70 K) and desmin were separated, and the breakdown of individual proteins by purified brain cathepsin D was measured and compared to breakdown by plasma thrombin. With both cathepsin D and thrombin, the rate of breakdown of the 70 K protein was the highest, followed by the 155 K, and that of the 210 K was the lowest. With each substrate cathepsin D breakdown was the highest at pH 3; small but significant breakdown could be seen at pH 6. The pattern of intermediate breakdown products depended on pH, with greater amounts of fragments detected at higher pH, and the patterns with the two enzymes were different. We showed that differences exist in cleavage sites and breakdown rates of the neurofilament proteins. The capacity of the cathepsin D present in the tissue to hydrolyze these substrates was high, even at pH close to neutral, and was greatly in excess of that needed for physiological neurofilament turnover.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00993246 | DOI Listing |
J Neurol
January 2025
Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany.
Background: BDNF has increasingly gained attention as a key molecule controlling remyelination with a prominent role in neuroplasticity and neuroprotection. Still, it remains unclear how BDNF relates to clinicoradiological characteristics particularly at the early stage of the disease where precise prognosis for the further MS course is crucial.
Methods: BDNF, NfL and GFAP concentrations in serum and CSF were assessed in 106 treatment naïve patients with MS (pwMS) as well as 73 patients with other inflammatory/non-inflammatory neurological or somatoform disorders using a single molecule array HD-1 analyser.
J Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
Int J Mol Sci
December 2024
Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy.
Severe mental disorders (SMDs), such as schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD), are heterogeneous psychiatric diseases that impose a significant societal burden due to their chronic disabling nature. There are no objective and reliable diagnostic tests for SMDs; thus, there is an urgent need for specific biomarkers to improve diagnosis, treatment, and resource allocation. Neurofilaments, found in cerebrospinal fluid and blood, offer reliable diagnostic and prognostic potential.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US.
Background: The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD.
View Article and Find Full Text PDFVet Res
January 2025
Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2-5, 10095, Grugliasco, TO, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!