A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glaucoma through Animal's Eyes: Insights from the Evolution of Intraocular Pressure in Mammals and Birds. | LitMetric

Glaucoma through Animal's Eyes: Insights from the Evolution of Intraocular Pressure in Mammals and Birds.

Animals (Basel)

Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Young Drive South, Los Angeles, CA 90095, USA.

Published: August 2022

Glaucoma, an eye disorder caused by elevated intraocular pressure (IOP), is the leading cause of irreversible blindness in humans. Understanding how IOP levels have evolved across animal species could shed light on the nature of human vulnerability to glaucoma. Here, we studied the evolution of IOP in mammals and birds and explored its life history correlates. We conducted a systematic review, to create a dataset of species-specific IOP levels and reconstructed the ancestral states of IOP using three models of evolution (Brownian, Early burst, and Ornstein-Uhlenbeck (OU)) to understand the evolution of glaucoma. Furthermore, we tested the association between life history traits (e.g., body mass, blood pressure, diet, longevity, and habitat) and IOP using phylogenetic generalized least squares (PGLS). IOP in mammals and birds evolved under the OU model, suggesting stabilizing selection toward an optimal value. Larger mammals had higher IOPs and aquatic birds had higher IOPs; no other measured life history traits, the type of tonometer used, or whether the animal was sedated when measuring IOP explained the significant variation in IOP in this dataset. Elevated IOP, which could result from physiological and anatomical processes, evolved multiple times in mammals and birds. However, we do not understand how species with high IOP avoid glaucoma. While we found very few associations between life history traits and IOP, we suggest that more detailed studies may help identify mechanisms by which IOP is decoupled from glaucoma. Importantly, species with higher IOPs (cetaceans, pinnipeds, and rhinoceros) could be good model systems for studying glaucoma-resistant adaptations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404445PMC
http://dx.doi.org/10.3390/ani12162027DOI Listing

Publication Analysis

Top Keywords

mammals birds
16
life history
16
iop
13
history traits
12
higher iops
12
intraocular pressure
8
iop levels
8
iop mammals
8
glaucoma
6
mammals
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!