PD-L1/pS6 in Circulating Tumor Cells (CTCs) during Osimertinib Treatment in Patients with Non-Small Cell Lung Cancer (NSCLC).

Biomedicines

Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece.

Published: August 2022

The PD-1/PD-L1 axis provides CTCs an escape route from the immune system. Phosphorylation of the ribosomal protein S6 is implicated in the same pathway, following mTOR activation. The aim of the study was to investigate the expression of PD-L1 and pS6 in CTCs from NSCLC patients under Osimertinib treatment at a single cell level. CTCs were isolated using ISET from NSCLC patients’ blood [37 at baseline, 25 after the 1st cycle, and 23 at the end of treatment (EOT)]. Staining was performed using immunofluorescence. Cytokeratin-positive (CK+) CTCs were detected in 62% of patients. CK+PD-L1+CD45− and CK+pS6+ phenotypes were detected in 38% and 41% of the patients at baseline, in 28% and 32% after 1st cycle, and in 30% and 35% at EOT, respectively. Spearman’s analysis revealed statistically significant correlations between PD-L1 and pS6 phenotypes at all time points. Survival analysis revealed that CK+pS6+ (p = 0.003) and CKlowpS6+ (p = 0.021) phenotypes after 1st cycle were related to significantly decreased one-year progression-free survival (PFS12m) and PFS, respectively. CK+PD-L1+CD45−phenotype at baseline and after 1st cycle showed a trend for decreased PFS12m. Increased expression of PD-L1/pS6 in CTCs of Osimertinib-treated NSCLC patients implies the activation of the corresponding pathway, which is potentially associated with poor clinical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405335PMC
http://dx.doi.org/10.3390/biomedicines10081893DOI Listing

Publication Analysis

Top Keywords

1st cycle
16
osimertinib treatment
8
pd-l1 ps6
8
nsclc patients
8
baseline 1st
8
analysis revealed
8
ctcs
6
patients
5
pd-l1/ps6 circulating
4
circulating tumor
4

Similar Publications

Carbon Monoxide-Releasing Activity of Plant Flavonoids.

J Agric Food Chem

December 2024

Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital in Prague and 1st Faculty of Medicine, Charles University, Na Bojišti 3, Prague 2 12108, Czech Republic.

Flavonoids are naturally occurring compounds found in fruits, vegetables, and other plant-based foods, and they are known for their health benefits, such as UV protection, antioxidant, anti-inflammatory, and antiproliferative properties. This study investigates whether flavonoids, such as quercetin and 2,3-dehydrosilybin, can act as photoactivatable carbon monoxide (CO)-releasing molecules under physiological conditions. CO has been recently recognized as an important signaling molecule.

View Article and Find Full Text PDF

The study focuses on spontaneous conception after menopause in a woman with primary ovarian insufficiency (POI), with an emphasis on the role of anti-Müllerian hormone (AMH) in fertility management. This case involves a 33-year-old woman with POI who has experienced both aided and spontaneous pregnancies. She had low AMH and high follicle-stimulating hormone (FSH) levels, which typically indicate a limited ovarian reserve.

View Article and Find Full Text PDF

This study aimed to develop and validate a predictive model for failure to collect oocytes in the Patient-Oriented Strategies Encompassing Individualized Oocyte Number (POSEIDON) Groups 3 and 4 during their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycle. A retrospective analysis was conducted on patients in POSEIDON Groups 3 and 4 who underwent their first IVF/ICSI cycle at our center from January 2016 to December 2023. A total of 2,373 patients were randomly assigned to the training or validation cohort at a ratio of 6:4.

View Article and Find Full Text PDF

Modern radiotherapy utilizes a broad range of sources of ionizing radiation, both low-dose-rate (LDR) and high-dose-rate (HDR). However, the mechanisms underlying specific dose-rate effects remain unclear, especially for corpuscular radiation. To address this issue, we have irradiated human epidermoid carcinoma A431 cells under LDR and HDR regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!