Doxorubicin (DOX), a widely used chemotherapeutic agent, has been linked to an increased risk of bone damage in human patients and induces bone loss in mice. DOX induces autophagy, which contributes to bone homeostasis and excess autophagy in osteoclasts (OCs), resulting in bone loss. We hypothesized that DOX-induced bone loss is caused by the induction of autophagy in OCs. In vitro, DOX significantly increased the area of OCs and bone resorption activity, whereas it decreased OC number through apoptosis. DOX enhanced the level of LC3II and acidic vesicular organelles-containing cells in OCs, whereas an autophagy inhibitor, 3-methyladenine (3-MA), reversed these, indicating that enhanced autophagy was responsible for the effects of DOX. Increased mitochondrial reactive oxygen species (mROS) by DOX oxidized transient receptor potential mucolipin 1 (TRPML1) on the lysosomal membrane, which led to nuclear localization of transcription factor EB (TFEB), an autophagy-inducing transcription factor. In vivo, micro-computerized tomography analysis revealed that the injection of 3-MA reversed DOX-induced bone loss, and tartrate-resistant acid phosphatase staining showed that 3-MA reduced the area of OCs on the bone surface, which was enhanced upon DOX administration. Collectively, DOX-induced bone loss is at least partly attributable to autophagy upregulation in OCs via an mROS/TRPML1/TFEB axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404930PMC
http://dx.doi.org/10.3390/antiox11081476DOI Listing

Publication Analysis

Top Keywords

bone loss
24
ocs bone
12
dox-induced bone
12
bone
10
induces bone
8
dox increased
8
area ocs
8
3-ma reversed
8
transcription factor
8
autophagy
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!