In recent years, there has been debate about the optimal conceptualisation of psychopathology. Structural models of psychopathology have been developed to counter issues, including comorbidity and poor diagnostic stability prevalent within the traditional nosological approach. Regardless of the conceptualisation of psychological dysfunction, deficits in neurocognitive abilities have been claimed to be an aetiological feature of psychopathology. Explorations of the association between neurocognition and psychopathology have typically taken a linear approach, overlooking the potential interactive dynamics of neurocognitive abilities. Previously, we proposed a multidimensional hypothesis, where within-person interactions between neurocognitive domains are fundamental to understanding the role of neurocognition within psychopathology. In this study, we used previously collected psychopathology data for 400 participants on psychopathological symptoms, substance use, and performance on eight neurocognitive tasks and compared the predictive accuracy of linear models to artificial neural network models. The artificial neural network models were significantly more accurate than the traditional linear models at predicting actual (a) lower-level and (b) high-level dimensional psychopathology. These results provide support for the multidimensional hypothesis: that the study of non-linear interactions and compensatory neurocognitive profiles are integral to understanding the functional associations between neurocognition and of psychopathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405994 | PMC |
http://dx.doi.org/10.3390/brainsci12081060 | DOI Listing |
Front Public Health
January 2025
Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.
Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Medical Informatics, Nantong University, Nantong, Jiangsu, China.
Introduction: Diabetic retinopathy (DR) has long been recognized as a common complication of diabetes, making accurate automated grading of its severity essential. Color fundus photographs play a crucial role in the grading of DR. With the advancement of artificial intelligence technologies, numerous researchers have conducted studies on DR grading based on deep features and radiomic features extracted from color fundus photographs.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Radiology, Frimley Park Hospital NHS Foundation Trust, Camberley, Surrey, UK.
Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.
Materials And Methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation.
Indian Dermatol Online J
December 2024
Financial Research and Executive Insights, Everest Group, Gurugram, Haryana, India.
Background: Artificial intelligence (AI) is revolutionizing healthcare by enabling systems to perform tasks traditionally requiring human intelligence. In healthcare, AI encompasses various subfields, including machine learning, deep learning, natural language processing, and expert systems. In the specific domain of onychology, AI presents a promising avenue for diagnosing nail disorders, analyzing intricate patterns, and improving diagnostic accuracy.
View Article and Find Full Text PDFImaging Neurosci (Camb)
November 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Synthetic data have emerged as an attractive option for developing machine-learning methods in human neuroimaging, particularly in magnetic resonance imaging (MRI)-a modality where image contrast depends enormously on acquisition hardware and parameters. This retrospective paper reviews a family of recently proposed methods, based on synthetic data, for generalizable machine learning in brain MRI analysis. Central to this framework is the concept of domain randomization, which involves training neural networks on a vastly diverse array of synthetically generated images with random contrast properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!