AI Article Synopsis

  • The study investigates the previously under-characterized N- and C-termini of the KcsA potassium channel, using advanced techniques like HR-MAS NMR and fractional deuteration.
  • The findings reveal that the C-terminus shifts from a rigid to a more dynamic structure as the environment becomes acidic, which is crucial for understanding its function.
  • Additionally, the research highlights how a C-terminal mutation destabilizes the channel's selectivity filter and notes lipid hydrolysis effects within the experimental setups.

Article Abstract

The structure of the transmembrane domain of the pH-activated bacterial potassium channel KcsA has been extensively characterized, yet little information is available on the structure of its cytosolic, functionally critical N- and C-termini. This study presents high-resolution magic angle spinning (HR-MAS) and fractional deuteration as tools to study these poorly resolved regions for proteoliposome-embedded KcsA. Using H-detected HR-MAS NMR, we show that the C-terminus transitions from a rigid structure to a more dynamic structure as the solution is rendered acidic. We make previously unreported assignments of residues in the C-terminus of lipid-embedded channels. These data agree with functional models of the C-terminus-stabilizing KcsA tetramers at a neutral pH with decreased stabilization effects at acidic pH. We present evidence that a C-terminal truncation mutation has a destabilizing effect on the KcsA selectivity filter. Finally, we show evidence of hydrolysis of lipids in proteoliposome samples during typical experimental timeframes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405666PMC
http://dx.doi.org/10.3390/biom12081122DOI Listing

Publication Analysis

Top Keywords

high-resolution magic
8
magic angle
8
angle spinning
8
kcsa
5
spinning nmr
4
nmr kcsa
4
kcsa liposomes
4
liposomes highly
4
highly mobile
4
mobile c-terminus
4

Similar Publications

In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) H-H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz).

View Article and Find Full Text PDF

Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate.

Gels

December 2024

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.

In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoE). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoE mice using solution and high-resolution-magic angle spinning (HR-MAS) H-NMR spectroscopy.

View Article and Find Full Text PDF

Mineral-Mediated Epitaxial Growth of CoO Nanoparticles for Efficient Electrochemical HO Activation.

ACS Nano

December 2024

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

Solution-phase epitaxy is a versatile method to synthesize functional nanomaterials with customized properties, where supports play a central role as they not only serve as nucleation templates but also greatly affect the local electronic structures. However, developing functional supports remains a great challenge. Herein, inspired by the commonly observed epitaxy of minerals in the natural environment, we report using calcination-modified kaolinite as the support for the epitaxial growth of hexagonal CoO nanoparticles (-CoO NPs), which enables over 40 times higher mass-specific activity toward HO electrochemical activation than the counterpart without the support.

View Article and Find Full Text PDF

Hyaluronic acid-based hydrogels as codelivery systems: The effect of intermolecular interactions investigated by HR-MAS and solid-state NMR Spectroscopy.

Carbohydr Polym

February 2025

Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, via Mancinelli 7, I-20131 Milano, MI, Italy. Electronic address:

Article Synopsis
  • - Hydrogels made from hyaluronic acid and agarose-carbomer are being studied for their potential to simultaneously deliver multiple drugs for different diseases, thanks to their biocompatibility and unique 3D structure.
  • - The study focuses on how ethosuximide and sodium salicylate interact and diffuse within these hydrogels, using advanced techniques like NMR Spectroscopy to analyze their transport properties.
  • - Findings suggest that when both drugs are loaded together, they behave similarly in their diffusion patterns, which may be influenced by drug-drug interactions, leading to a proposed trapping-release mechanism that affects how the drugs are released from the hydrogels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!