Children born from women with preeclampsia have alterations in cerebral neurovascular development and a high risk for developing cognitive alterations. Because cerebral blood vessels are critical components in cerebrovascular development, we evaluated the brain microvascular perfusion and microvascular reactivity (exposed to external stimuli of warm and cold) in pups born to preeclampsia-like syndrome based on the reduction of uterine perfusion (RUPP). Also, we evaluate the angiogenic proteomic profile in those brains. Pregnant mice showed a reduction in uterine flow after RUPP surgery (-40 to 50%) associated with unfavorable perinatal results compared to sham mice. Furthermore, offspring of the RUPP mice exhibited reduced brain microvascular perfusion at postnatal day 5 (P5) compared with offspring from sham mice. This reduction was preferentially observed in females. Also, brain microvascular reactivity to external stimuli (warm and cold) was reduced in pups of RUPP mice. Furthermore, a differential expression of the angiogenic profile associated with inflammation, extrinsic apoptotic, cancer, and cellular senescence processes as the primary signaling impaired process was found in the brains of RUPP-offspring. Then, offspring (P5) from preeclampsia-like syndrome exhibit impaired brain perfusion and microvascular reactivity, particularly in female mice, associated with differential expression of angiogenic proteins in the brain tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670000 | PMC |
http://dx.doi.org/10.1177/0271678X221121872 | DOI Listing |
Heart Fail Rev
January 2025
Department of Cardiology, Cardiology I, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
Heart failure is a prevalent global health issue. Heart failure with preserved ejection fraction (HFpEF), which already represents half of all heart cases worldwide, is projected to further increase, driven by aging populations and rising cardiovascular risk factors. Effective therapies for HFpEF remain limited, particularly due to its pathophysiological heterogeneity and incomplete understanding of underlying pathomechanisms and implications.
View Article and Find Full Text PDFBackground: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFDiscov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFCardiovasc Res
January 2025
State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Aims: The therapeutic efficacy of coronary revascularization is compromised by myocardial ischemia-reperfusion (MI/R) injury. Higher levels of circulating arachidonic acid (AA) are reportedly associated with lower risk of cardiovascular disease. The cyclooxygenase (COX) pathway metabolizes AA into prostaglandins (PGs) and the platelet-activating thromboxane A2 (TXA2), which is inhibited by aspirin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!