CRISPR-Cas9 technology radically changed the approach to genetic manipulation of both medically and industrially relevant Candida species, as attested by the ever-increasing number of applications to the study of pathogenesis, drug resistance, gene expression, and host pathogen interaction and drug discovery. Here, we describe the use of plasmid-based systems for high efficiency CRISPR-Cas9 gene editing into any strain of four non-albicans Candida species, namely, Candida parapsilosis, Candida orthopsilosis, Candida metapsilosis, and Candida tropicalis. The plasmids pCP-tRNA and pCT-tRNA contain all the elements necessary for expressing the CRISPR-Cas9 machinery, and they can be used in combination with a repair template for disrupting gene function by insertion of a premature stop codon or by gene deletion. The plasmids are easily lost in the absence of selection, allowing scarless gene editing and minimizing detrimental effects of prolonged Cas9 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2549-1_2 | DOI Listing |
Pharmaceutics
January 2025
Faculty of Pharmacy, "Grigore. T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland.
Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
Background: Polymethyl methacrylate (PMMA) is ideal for denture bases but is prone to biofilm accumulation, leading to denture stomatitis (DS), often involving . Dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are introduced into dental materials for their antimicrobial and protein-repellent properties. This study investigates the effects of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base resins on microbial adhesion and cytotoxicity.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute for Medicinal Plants Research "Dr. Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia.
Background/objectives: Scop. is traditionally used for treatment of various gastrointestinal ailments. In this study, we investigated the phytochemical profile and biological activities of leaves, bark and flowers extracts of Methods: Phytochemical analysis was performed using HPLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!