Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The growth of the world population has led to the expansion of agricultural areas to produce food that meets world demand, making it necessary to increase productivity and maintain environmental sustainability in these areas. Seeking sustainable food production, the agricultural use of soil must be assessed in view of optimal use or land as natural resource, as well as minimize the effects of global warming related to land use and land cover (LULC). We hypothesize that different LULC affects Amazonian soil attributes. In this study, the effect of different LULC in the southern Brazilian Amazon, namely, native forest, pasture, and rice and soybean crops, on the spatial variability of soil fertility and texture was assessed, seeking to obtain information that will guide farmers in the near future to better exploit their areas and contribute to a more sustainable agriculture. Descriptive statistical analysis was performed for the pH, H + Al, Al, Ca, Mg, P, K, Cu, Fe, Mn, Zn, V, m, organic matter, clay, silt, and sand values from soil samples under different LULC. To verify the data normality, the Shapiro-Wilk test at 5% significance was performed. Outlier analysis using boxplot graphics, principal component analysis (PCA), and cluster analysis was performed. Data were submitted to geostatistical analysis to verify the spatial dependence degree of the variables through semivariograms for interpolated kriging maps. Except for silt, all variables were well represented in the factor map. PCA revealed that the data variability can be explained mainly by pH, V, Ca, K, and Zn values, which are inversely proportional to m, P, and sand. Through geostatistical analysis, spatial dependence ranging from moderate to strong was observed, generating reliability in the prediction of most attributes in pasture, rice, and soybean areas. Yet, a spatial dependence ranging from moderate to strong was found, generating reliability in the prediction of most attributes in pasture, rice, and soybean areas. Our findings reveal a lower fertility and higher acidity in forest areas, whereas crop areas presented the opposite result.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10342-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!