Background: Intraoperative identification of cancerous tissue is fundamental during oncological surgical or endoscopic procedures. This relies on visual assessment supported by histopathological evaluation, implying a longer operative time. Hyperspectral imaging (HSI), a contrast-free and contactless imaging technology, provides spatially resolved spectroscopic analysis, with the potential to differentiate tissue at a cellular level. However, HSI produces "big data", which is impossible to directly interpret by clinicians. We hypothesize that advanced machine learning algorithms (convolutional neural networks-CNNs) can accurately detect colorectal cancer in HSI data.

Methods: In 34 patients undergoing colorectal resections for cancer, immediately after extraction, the specimen was opened, the tumor-bearing section was exposed and imaged using HSI. Cancer and normal mucosa were categorized from histopathology. A state-of-the-art CNN was developed to automatically detect regions of colorectal cancer in a hyperspectral image. Accuracy was validated with three levels of cross-validation (twofold, fivefold, and 15-fold).

Results: 32 patients had colorectal adenocarcinomas confirmed by histopathology (9 left, 11 right, 4 transverse colon, and 9 rectum). 6 patients had a local initial stage (T1-2) and 26 had a local advanced stage (T3-4). The cancer detection performance of the CNN using 15-fold cross-validation showed high sensitivity and specificity (87% and 90%, respectively) and a ROC-AUC score of 0.95 (considered outstanding). In the T1-2 group, the sensitivity and specificity were 89% and 90%, respectively, and in the T3-4 group, the sensitivity and specificity were 81% and 93%, respectively.

Conclusions: Automatic colorectal cancer detection on fresh specimens using HSI, using a properly trained CNN is feasible and accurate, even with small datasets, regardless of the local tumor extension. In the near future, this approach may become a useful intraoperative tool during oncological endoscopic and surgical procedures, and may result in precise and non-destructive optical biopsies to support objective and consistent tumor-free resection margins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00464-022-09524-zDOI Listing

Publication Analysis

Top Keywords

colorectal cancer
16
sensitivity specificity
12
cancer hyperspectral
8
hyperspectral imaging
8
cancer detection
8
group sensitivity
8
cancer
7
colorectal
6
hsi
5
automatic optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!