Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411590PMC
http://dx.doi.org/10.1038/s42003-022-03836-5DOI Listing

Publication Analysis

Top Keywords

polyaminoisoprenyl compound
8
compound nv716
8
pseudomonas aeruginosa
8
outer membrane
8
nv716
5
antibiotics
5
membrane-active polyaminoisoprenyl
4
nv716 re-sensitizes
4
re-sensitizes pseudomonas
4
aeruginosa
4

Similar Publications

The spread of antibiotic resistance is an urgent threat to global health that requires new therapeutic approaches. Treatments for pathogenic Gram-negative bacteria are particularly challenging to identify due to the robust OM permeability barrier in these organisms. One strategy is to use antibiotic adjuvants, a class of drugs that have no significant antibacterial activity on their own but can act synergistically with certain antibiotics.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria.

View Article and Find Full Text PDF

Potentiators can improve antibiotic activity against difficult-to-treat Gram-negative bacteria like Escherichia coli, Klebsiella pneumoniae or Acinetobacter baumannii. They represent an appealing strategy in view of the paucity of therapeutic alternatives in case of multidrug resistance. Here, we examine the ability of the polyamino-isoprenyl compound NV716 to restore the activity of a series of disused antibiotics (rifampicin, azithromycin, linezolid, fusidic acid, novobiocin, chloramphenicol, and doxycycline, plus ciprofloxacin as an active drug) against these three species in planktonic cultures, but also in infected human monocytes and biofilms and we study its underlying mechanism of action.

View Article and Find Full Text PDF

The global increase of multidrug resistant bacteria and the lack of new classes of antibiotic especially those targeting Gram-negative pathogens are leaving the clinicians disarmed to treat numerous bacterial infections. Recently, the design of adjuvants able to enhance antibiotics activities appears to be one of the most promising investigated solutions to circumvent this problem. In this context, we have recently identified a new polyamino-isoprenyl derivative NV716 able to potentiate, at a very low concentration the activity of doxycycline against resistant P.

View Article and Find Full Text PDF

The growing number of multidrug resistant strains in Tunisia has become a serious health concern contributing to high rate of mortality and morbidity. Since current antibiotics are rapidly becoming ineffective, novel strategies to combat resistance are needed. Recently, we demonstrated that combination of a tetracycline antibiotic with various polyaminoisoprenyl adjuvants can sustain the life span and enhance the activity of these drugs against reference strain (PA01).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!