Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Global mean lower stratosphere temperatures rose abruptly in January 2020 reaching values not experienced since the early 1990s. Anomalously high lower stratospheric temperatures were recorded for 4 months at highly statistically significant levels. Here, we use a combination of satellite and surface-based remote sensing observations to derive a time-series of stratospheric biomass burning aerosol optical depths originating from intense SouthEastern Australian wildfires and use these aerosol optical depths in a state-of-the-art climate model. We show that the S.E. Australian wildfires are the cause of this lower stratospheric warming. We also investigate the radiatively-driven dynamical response to the observed stratospheric ozone perturbation and find a significant strengthening of the springtime Antarctic polar vortex suggesting that biomass burning aerosols play a significant role in the observed anomalous longevity of the ozone hole in 2020.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411169 | PMC |
http://dx.doi.org/10.1038/s41598-022-15794-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!