A comprehensive data set of physical and human-dimensional attributes for China's lake basins.

Sci Data

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.

Published: August 2022

Lakes provide water-related ecosystem services that support human life and production. Nevertheless, climate changes and anthropogenic interventions remarkably altered lake and basin hydrology in recent decades, which pose a significant threat to lacustrine ecosystems. Therefore, assessments of lacustrine ecosystems require the spatial and temporal characteristics of key physical and human-dimensional attributes for lakes and lake basins. To facilitate stakeholders obtaining comprehensive data of lake basins in China, we compiled the comprehensive data set for China's lake basins (CODCLAB) mostly from publicly available data sources based on spatial analysis and mathematical statistics methods in this study. The CODCLAB is available in three data formats, including raster layers (Level 1) in "tiff" format, vector shapefiles (Level 2), and attribute tables (Level 3). It covers 767 lakes (>10 km) in China and their basin extent associating with 34 variables organized into five categories: Hydrology, Topography, Climate, Anthropogenic, and Soils. This unique database will provide basic data for research on the physical processes and socioeconomic activities related to these lakes and their basins in China and expect to feed a broad user community for their application in different areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411201PMC
http://dx.doi.org/10.1038/s41597-022-01649-zDOI Listing

Publication Analysis

Top Keywords

lake basins
16
comprehensive data
12
data set
8
physical human-dimensional
8
human-dimensional attributes
8
china's lake
8
lacustrine ecosystems
8
basins china
8
lake
5
basins
5

Similar Publications

Hydrological dynamics of the Yangtze river-Dongting lake system after the construction of the three Gorges dam.

Sci Rep

January 2025

School of Ocean Engineering and Technology/Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou, 510275, China.

The Yangtze River-Dongting Lake link has gotten a lot of attention as a because of the Three Gorges Project. However, the hydrological dynamic process and future direction of the river-lake interaction in the context of sediment reduction are yet unknown. Based on Dongting Lake Basin runoff and sediment data from 1961 to 2020, as well as field monitoring data of turbidity and flow velocity from Yichang to Chenglingji section of the Yangtze River, this paper examines the runoff and sediment variation law and hydrological dynamic process of Chenglingji, the only outlet connecting Dongting Lake to the Yangtze River, and reveals the development trend of the river-lake relationship.

View Article and Find Full Text PDF

Marginal response of non-structural carbohydrates and increased biomass in a dominant shrub (Dasiphora fruticosa) to water table decline in a minerotrophic peatland.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China.

Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.

View Article and Find Full Text PDF

The Urmia Lake Basin has been severely affected by the unbalanced exploitation of water resources. To better manage the use of integrated water resources, the coupled SWAT-MODFLOW-NWT was adopted for the Mahabad Plain in the Urmia Lake Basin, N.W.

View Article and Find Full Text PDF

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.

View Article and Find Full Text PDF

Tin contamination in sediments of Lake Zurich: source, spread, history and risk assessment.

Swiss J Geosci

December 2024

Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, Dübendorf, 8600 Switzerland.

Unlabelled: Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!