Amyloid self-assembly is linked to numerous devastating cell-degenerative diseases. However, designing inhibitors of this pathogenic process remains a major challenge. Cross-interactions between amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP), key polypeptides of Alzheimer's disease (AD) and type 2 diabetes (T2D), have been suggested to link AD with T2D pathogenesis. Here, we show that constrained peptides designed to mimic the Aβ amyloid core (ACMs) are nanomolar cross-amyloid inhibitors of both IAPP and Aβ42 and effectively suppress reciprocal cross-seeding. Remarkably, ACMs act by co-assembling with IAPP or Aβ42 into amyloid fibril-resembling but non-toxic nanofibers and their highly ordered superstructures. Co-assembled nanofibers exhibit various potentially beneficial features including thermolability, proteolytic degradability, and effective cellular clearance which are reminiscent of labile/reversible functional amyloids. ACMs are thus promising leads for potent anti-amyloid drugs in both T2D and AD while the supramolecular nanofiber co-assemblies should inform the design of novel functional (hetero-)amyloid-based nanomaterials for biomedical/biotechnological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411207 | PMC |
http://dx.doi.org/10.1038/s41467-022-32688-0 | DOI Listing |
Nat Commun
August 2022
Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), 85354, Freising, Germany.
Amyloid self-assembly is linked to numerous devastating cell-degenerative diseases. However, designing inhibitors of this pathogenic process remains a major challenge. Cross-interactions between amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP), key polypeptides of Alzheimer's disease (AD) and type 2 diabetes (T2D), have been suggested to link AD with T2D pathogenesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2015
Division of Peptide Biochemistry, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising (Germany).
The design of inhibitors of protein-protein interactions mediating amyloid self-assembly is a major challenge mainly due to the dynamic nature of the involved structures and interfaces. Interactions of amyloidogenic polypeptides with other proteins are important modulators of self-assembly. Here we present a hot-segment-linking approach to design a series of mimics of the IAPP cross-amyloid interaction surface with Aβ (ISMs) as nanomolar inhibitors of amyloidogenesis and cytotoxicity of Aβ, IAPP, or both polypeptides.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2008
Laboratory of Peptide Biochemistry, Center for Integrated Protein Science München, Technische Universität München, An der Saatzucht 5, 85350 Freising-Weihenstephan, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!