Control of strain in perovskite crystals has been considered as an effective strategy to ensure the phase stability of perovskite films where a compressive strain is particularly preferred over a tensile strain due to a lowered Gibbs free energy by the unit cell contraction effect. Here we adapt the strategy of strain control into perovskite solar cells in which the compressive strain is applied by utilizing a thermal expansion difference between the perovskite film and an adjacent layer. Poly(4-butylphenyldiphenylamine), with a higher thermal expansion coefficient compared to that of perovskite, is employed as a substrate for perovskite crystal growth at 100 °C, followed by cooling to room temperature. The applied compressive strain at the interface, as a result of a greater contraction of the polymer compared to the perovskite film, is confirmed by grazing incidence X-ray diffraction showing a red peak shift with increasing secondary angle. The compressive strain-induced perovskite film shows relatively constant absorbance spectra as a function of time. In the meantime, the absorbance spectra of a film without strain control exhibit a gradual decay with developing an Urbach tail. Importantly, the effect of strain engineering is remarkably prominent in the long-term photovoltaic performance. The photocurrent drops by 41% over 911 h without controlling strain, which is significantly improved by employing compressive strain, showing only a 6% drop in photocurrent from a shelf-stability test without encapsulation. It is also noted that an -shaped kink appears in the current-voltage curves since 579-h-long storage for the device without strain control, leading to unreliable and overestimated fill factor and conversion efficiency. On the other hand, a 16% increase in fill factor with a stable performance is derived over 911 h from the compressive strain-induced device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c10450 | DOI Listing |
Sensors (Basel)
January 2025
China Railway Seventh Group Co., Ltd., Zhengzhou 450016, China.
This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Long-gauge fiber optic sensors have proven to be valuable tools for structural health monitoring, especially in reinforced concrete (RC) beam structures. While their application in this area has been well-documented, their use in RC columns remains relatively unexplored. This suggests a promising avenue for further research and development.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil and Transportation Engineering, Hebei University of Technology, Xiping Road 5340, Tianjin 300401, China.
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze-thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze-thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze-thaw cycles.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Coal Mine Disasters Dynamics and Control, Chongqing University, Chongqing 400044, China.
To investigate the mechanical and energy evolution characteristics of fractured rock under true triaxial stresses, true triaxial strength compression experiments on fractured sandstone were conducted with varying crack lengths and widths. The results indicate that under true triaxial stresses, the peak stress of the rock exhibits a gradual decline with an increase in crack length and width. Meanwhile, crack initiation stress and crack damage stress of fractured sandstone also demonstrate a declining trend overall, and the influence of crack length on the characteristic stress (crack initiation stress and crack damage stress) of sandstone is more pronounced than that of crack width.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!