[Comparison of stent displacement and displacement force after endovascular aneurysm repair with cross-limb or parallel-limb stent].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China.

Published: August 2022

This study aims to investigate whether displacement force on stents can accurately represents the displacement of the stent after endovascular aneurysm repair (EVAR) by comparing the measured stent displacement with the displacement forces calculated by computational fluid dynamics (CFD). And the effect of cross-limb and parallel-limb EVAR on stent displacements is further studied. Based on our objective, in this study, ten cross-limb EVAR patients and ten parallel-limb EVAR patients in West China Hospital of Sichuan University were enrolled. Patient-specific models were first reconstructed based on the computed tomography angiography images, then the stent displacements were measured, and the displacement forces acting on the stents were calculated by CFD. Finally, the value of the angle between the displacement force and the displacement vector was used to analyze the matching degree between the displacement and the displacement force. The results showed that the displacement forces on cross-limb stents and parallel-limb stents were (2.67 ± 2.14) N and (1.36 ± 0.48) N, respectively. Displacements of stent gravity center, stent displacements relative to vessel, and vessel displacements of cross-limb and parallel-limb stents were (4.43 ± 2.81) mm and (6.39 ± 2.62) mm, (0.88 ± 0.67) mm and (1.11 ± 0.71) mm, (3.55 ± 2.88) mm and (5.28 ± 2.52) mm, respectively. The mean for cross-limb and parallel-limb stents were 0.02 ± 0.66 and - 0.10 ± 0.73, respectively. This study indicates that the displacement force on the stent can't accurately represent the displacement of the stent after EVAR. In addition, the cross-limb EVAR is probably safer and more stable than the parallel-limb EVAR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957364PMC
http://dx.doi.org/10.7507/1001-5515.202107038DOI Listing

Publication Analysis

Top Keywords

displacement force
20
cross-limb parallel-limb
16
displacement
14
displacement displacement
12
displacement forces
12
parallel-limb evar
12
stent displacements
12
parallel-limb stents
12
stent displacement
8
endovascular aneurysm
8

Similar Publications

Fault ruptures induced by earthquakes pose a significant threat to constructions, particularly underground structures such as pile foundations. Among various foundation types, batter pile foundations are widely used due to their ability to resist inclined forces. To gain new insights into the response of batter pile groups to fault ruptures caused by earthquakes, this study investigates the deformation and failure mechanisms of batter pile groups due to the propagation of normal and reverse fault ruptures using 3D numerical modeling.

View Article and Find Full Text PDF

Pore formation mechanism and size regulation study of atmospheric dried cellulose nanofiber aerogel templated by emulsions.

Int J Biol Macromol

January 2025

College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:

Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.

View Article and Find Full Text PDF

Home care workers are affected by musculoskeletal disorders caused by biomechanical factors. This study investigated the effect of three exoskeletons devices (HAPO, HAPO FRONT and Japet.W) during load mobilization tasks at three bed heights in order to reduce physical risk factor.

View Article and Find Full Text PDF

Mechanical Modulation of S-S and S-T Energy Gaps of 11- and All- Retinal Schiff Bases.

J Phys Chem B

January 2025

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid E-28871, Spain.

The retinal Schiff base is a chromophore of significant biological relevance, as it is responsible for capturing sunlight in rhodopsins, which are photoactive proteins found in various living organisms. Additionally, this chromophore is subjected to various mechanical forces in different proteins, which alter its structure and, consequently, its properties. To thoroughly understand the mechanical response limits of the retinal excitation energy, a simple first-order formalism has been developed to quantify the chromophore's optimal mechanical response to applied external forces (on the order of tens of pN).

View Article and Find Full Text PDF

Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.

Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!