Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Colposcopy is an important part of cervical screening/management programs. Colposcopic appearance is often classified, for teaching and telemedicine, based on static images that do not reveal the dynamics of acetowhitening. We compared the accuracy and reproducibility of colposcopic impression based on a single image at one minute after application of acetic acid versus a time-series of 17 sequential images over two minutes.
Methods: Approximately 5000 colposcopic examinations conducted with the DYSIS colposcopic system were divided into 10 random sets, each assigned to a separate expert colposcopist. Colposcopists first classified single two-dimensional images at one minute and then a time-series of 17 sequential images as 'normal,' 'indeterminate,' 'high grade,' or 'cancer'. Ratings were compared to histologic diagnoses. Additionally, 5 colposcopists reviewed a subset of 200 single images and 200 time series to estimate intra- and inter-rater reliability.
Results: Of 4640 patients with adequate images, only 24.4% were correctly categorized by single image visual assessment (11% of 64 cancers; 31% of 605 CIN3; 22.4% of 558 CIN2; 23.9% of 3412 < CIN2). Individual colposcopist accuracy was low; Youden indices (sensitivity plus specificity minus one) ranged from 0.07 to 0.24. Use of the time-series increased the proportion of images classified as normal, regardless of histology. Intra-rater reliability was substantial (weighted kappa = 0.64); inter-rater reliability was fair ( weighted kappa = 0.26).
Conclusion: Substantial variation exists in visual assessment of colposcopic images, even when a 17-image time series showing the two-minute process of acetowhitening is presented. We are currently evaluating whether deep-learning image evaluation can assist classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygyno.2022.08.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!