Introduction: Knee osteoarthritis (KOA) is a leading cause of disability and is characterised by degenerative changes causing pain and loss of function. Neuromuscular electrical stimulation (NMES) has been shown to influence muscle size and strength in healthy subjects. A novel self-administered NMES device has been developed to help manage the symptoms of KOA. This study aims to investigate the effects of combining NMES of the calf and quadriceps on individuals with KOA.

Methods And Analysis: 193 individuals with KOA will be recruited to a single-centre, double-blind, randomised, sham-controlled trial at the Respiratory Biomedical Research Centre, Leicester, UK. Participants will be randomised (1:1) to follow an 8-week home-based intervention using a NMES device or sham device. The NMES device consists of footplate electrodes and two quadriceps electrodes. Footplate stimulation will be completed daily for 30 min and quadriceps stimulation for 20 min, five times a week (compliance is recorded in a self-reported participant diary). The primary outcome is the Western Ontario and McMaster Universities Arthritis Index pain domain, taken at 8 weeks follow-up. Secondary outcomes will explore quadriceps muscle strength, swelling, health-related quality of life, exercise capacity, anxiety and depression, sleep, physical activity and self-reported compliance. A powered subgroup analysis for compliance to the active device will be complete for the primary outcome. Participant focus groups will be completed following recruitment of half of the participants and after all participants have been recruited.

Ethics And Dissemination: Ethical approval has been obtained from the North-West Preston ethics committee (17/NW/0081). Participants are required to provide informed consent following review of the participant information sheet and discussion regarding study procedures with a member of the research team. The study results will be disseminated to the appropriate stakeholders through presentations, conferences and peer-reviewed journals. Results will be presented to participants following study completion at the Biomedical Research Centre-Respiratory, Glenfield Hospital, Leicester.

Trial Registration Number: ISRCTN registry, ISRCTN12112819 (date registered 1 May 2019). IRAS registry 219 693. University Hospitals of Leicester registry 91 017. Protocol Version 8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9422813PMC
http://dx.doi.org/10.1136/bmjopen-2022-061113DOI Listing

Publication Analysis

Top Keywords

nmes device
12
effects combining
8
electrical stimulation
8
double-blind randomised
8
randomised sham-controlled
8
sham-controlled trial
8
will
8
will completed
8
primary outcome
8
nmes
5

Similar Publications

Introduction: Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity.

View Article and Find Full Text PDF

Improved motor imagery skills after repetitive passive somatosensory stimulation: a parallel-group, pre-registered study.

Front Neural Circuits

January 2025

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.

Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.

View Article and Find Full Text PDF

Neuromuscular Electrostimulation Increases Microcirculatory Flux in Mixed Etiology Leg Ulcers.

Adv Skin Wound Care

January 2025

Keith Gordon Harding, Mb ChB, CBE, FRCGP, FRCP, FRCS, FLSW, is Professor Emeritus Cardiff University, Cardiff, Wales; Adjunct Professor Monash University Malaysia, Subang Jaya, Selangor, Malaysia; and Co-Founder and Editor in Chief of the International Wound Journal. Melissa Blow, BSc, is Principal Podiatrist, South East Wales Vascular Network, Aneurin Bevan University Health Board, Cardiff, Wales. Faye Ashton, BSc, is Vascular Research Nurse, Leicester Biomedical Research Centre, Glenfield University Hospital, Leicester, United Kingdom. David Bosanquet, MD, is Consultant Vascular Surgeon, South East Wales Vascular Network, Aneurin Bevan University Health Board. Acknowledgments: The authors acknowledge the assistance of Firstkind Ltd, Hawk House, Peregrine Business Park, Gomm Road, High Wycombe, United Kingdom HP13 7DL for sponsoring the study (grant ref: FSK-SPECKLE-001) and provided the NMES devices for the trial. Keith Harding has received payments for consulting work from Firstkind Ltd. The authors have disclosed no other financial relationships related to this article. Submitted November 28, 2023; accepted in revised form April 17, 2024.

Objective: To determine if intermittent neuromuscular electrostimulation (NMES) of the common peroneal nerve increases microvascular flow and pulsatility in and around the wound bed of patients with combined venous and arterial etiology.

Methods: Seven consenting participants presenting with mixed etiology leg ulcers participated in this study. Microvascular flow and pulsatility was measured in the wound bed and in the skin surrounding the wound using laser speckle contrast imaging.

View Article and Find Full Text PDF

: Previous studies have shown that neuromuscular electrical stimulation (NMES), while expensive, can provide some of the health benefits of exercise to people who cannot exercise their legs normally. The aim of this study was to quantify the increases in muscle metabolism in four muscles of the legs of able-bodied individuals with NMES. : Healthy college-aged students were tested.

View Article and Find Full Text PDF

Unlocking the potential of neuromuscular electrical stimulation: achieving physical activity benefits for all abilities.

Front Sports Act Living

November 2024

Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Neuromuscular Electrical Stimulation (NMES) uses electrical impulses to induce muscle contractions, providing benefits in rehabilitation, muscle activation, and as an adjunct to exercise, particularly for individuals experiencing immobilization or physical disability. NMES technology has significantly progressed, with advancements in device development and a deeper understanding of treatment parameters, such as frequency, intensity, and pulse duration. These improvements have expanded NMES applications beyond rehabilitation to include enhanced post-exercise recovery, improved blood glucose uptake, and increased lower limb venous return, potentially reducing thrombotic risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!