Medical abzymology has made a great contribution to the development of general autoimmunity theory: it has put the autoantibodies (Ab) as the key brick of the theory to the level of physiological functionality by providing such Ab with the ability to catalyze and mediate direct and independent cytotoxic effect on cellular and molecular targets. Natural catalytic autoantibodies (abzymes) while being a pool of canonical Abs and possessing catalytic activity belong to the new group of physiologically active substances whose features and properties are evolutionary consolidated in one functionally active biomolecule. Therefore, further studies on Ab-mediated autoAg degradation and other targeted Ab-mediated proteolysis may provide biomarkers of newer generations and thus a supplementary tool for assessing the disease progression and predicting disability of the patients and persons at risks. This chapter is a summary of current knowledge and prognostic perspectives toward catalytic Abs in autoimmunity and thus some autoimmune clinical cases, their role in pathogenesis, and the exploitation of both whole molecules and their constituent parts in developing highly effective targeted drugs of the future to come, and thus the therapeutic protocols being individualized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pmbts.2022.02.004 | DOI Listing |
Nat Cancer
January 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Due to considerable tumour heterogeneity, stomach adenocarcinoma (STAD) has a poor prognosis and varies in response to treatment, making it one of the main causes of cancer-related mortality globally. Recent data point to a significant role for metabolic reprogramming, namely dysregulated lactic acid metabolism, in the evolution of STAD and treatment resistance. This study used a series of artificial intelligence-related approaches to identify IGFBP7, a Schlafen family member, as a critical factor in determining the response to immunotherapy and lactic acid metabolism in STAD patients.
View Article and Find Full Text PDFJ Pathol
February 2025
Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
Colorectal cancer (CRC) is a histologically heterogeneous disease with variable clinical outcome. The role the tumour microenvironment (TME) plays in determining tumour progression is complex and not fully understood. To improve our understanding, it is critical that the TME is studied systematically within clinically annotated patient cohorts with long-term follow-up.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de México, México.
Tequila bats (genus Leptonycteris) have gained attention for their critical role in pollinating different plant species, especially Agave spp. and columnar cacti. Leptonycteris nivalis is the largest nectar-feeding bat in the Americas, and the females exhibit migratory behavior during the breeding season.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA.
Background: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown.
Methods: Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!