A focus of combat casualty care research is to develop treatments for when full resuscitation after hemorrhage is delayed. However, few animal models exist to investigate such treatments. Given the kidney's susceptibility to ischemia, we determined how delayed resuscitation affects renal function in a model of traumatic shock. Rats were randomized into three groups: resuscitation after 1 h (ETH-1) or 2 h (ETH-2) of extremity trauma and hemorrhagic shock, and sham control. ETH was induced in anesthetized rats with muscle injury and fibula fracture, followed by pressure-controlled hemorrhage [mean arterial pressure (MAP) = 55 mmHg] for 1 or 2 h. Rats were then resuscitated with whole blood until MAP stabilized between 90 and 100 mmHg for 30 min. MAP, glomerular filtration rate (GFR), creatinine, blood gases, and fractional excretion of sodium (nFENa) were measured for 3 days. Compared with control, ETH-1 and ETH-2 exhibited decreases in GFR and nFENa, and increases in circulating lactate, creatinine, and blood urea nitrogen (BUN) before and within 30 min after resuscitation. The increases in creatinine, BUN, and potassium were greater in ETH-2 than in ETH-1, whereas lactate levels were similar between ETH-1 and ETH-2 before and after resuscitation. All measurements were normalized in ETH-1 within 2 days after resuscitation, with 22% mortality. However, ETH-2 exhibited a prolonged impairment of GFR, increased nFENa, and a 66% mortality. Resuscitation 1 h after injury therefore preserves renal function, whereas further delay of resuscitation irreversibly impairs renal function and increases mortality. This animal model can be used to explore treatments for prolonged prehospital care following traumatic hemorrhage. A focus of combat casualty care research is to develop treatment where full resuscitation after hemorrhage is delayed. However, animal models of combat-related hemorrhagic shock in which to determine physiological outcomes of such delays and explore potential treatment for golden hour extension are lacking. In this study, we filled this knowledge gap by establishing a traumatic shock model with reproducible development of AKI and shock-related complications determined by the time of resuscitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512111 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00335.2022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!