The key enzymes of lipid biosynthesis in oleaginous filamentous fungi exist as metabolons. However, the existence of a similar organization in other groups of oleaginous microorganisms is still unknown. In this study, we confirmed the occurrence of two separate and distinct lipogenic metabolons in a thraustochytrid, Aurantiochytrium SW1. These involve the Type I Fatty Acid Synthase (FAS) pathway, consisting of six enzymes: fatty acid synthase, malic enzyme (ME), ATP: citrate lyase (ACL), acetyl-CoA carboxylase (ACC), malate dehydrogenase (MD) and pyruvate carboxylase (PC), and the Polyketide Synthase-like (PKS) pathway, consisting of PKS subunits a, b, c, glucose-6-phosphate dehydrogenase (G6PDH) 6-phosphogluconate dehydrogenase (6PGDH), ACL and ACC. This suggests that the NADPH requirement for the FAS pathway is primarily generated and channelled by ME whereas G6PDH and 6PGDH fulfil this role for the PKS pathway. Diminished biosynthesis of palmitic acid (16:0), docosahexaenoic acid (22:6 n-3, DHA) and docosapentaenoic acid (22:5 n-6, DPA) correlated with the dissociation of their respective metabolons thereby suggesting that regulation of the pathways is achieved through the formation and dissociation of the metabolons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2022.159224 | DOI Listing |
Anal Chem
January 2025
Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States.
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.
View Article and Find Full Text PDFAliment Pharmacol Ther
January 2025
Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France.
Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.
Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.
World J Diabetes
January 2025
College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, Yunnan Province, China.
The onset and progression of type 2 diabetes mellitus (T2DM) are strongly associated with imbalances in gut bacteria, making the gut microbiome a new potential therapeutic focus. This commentary examines the recent publication in . The article explores the association between T2DM and gut microbiota, with a focus on the pathophysiological changes related to dysbiosis.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
RSC Chem Biol
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin - Madison Madison Wisconsin 53706 USA
Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!