Bulk segregant linkage mapping for rodent and human malaria parasites.

Parasitol Int

Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA. Electronic address:

Published: December 2022

AI Article Synopsis

  • Richard Carter's 2005 method, "linkage group selection", revolutionized malaria genetics by using bulk progeny pools to quickly map traits like drug resistance.
  • This method also introduced "bulk segregant" strategies, which are now popular in various microbes, including yeast and several pathogens.
  • Recent advances allow genetic crosses of human malaria parasites in humanized mice, opening up further research opportunities for mapping diverse traits in malaria.

Article Abstract

In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parint.2022.102653DOI Listing

Publication Analysis

Top Keywords

bulk segregant
12
malaria parasites
12
human malaria
8
segregant approaches
8
malaria parasite
8
parasite traits
8
malaria
6
bulk
4
segregant linkage
4
mapping
4

Similar Publications

Single atom alloys aggregation in the presence of ligands.

Nanoscale

January 2025

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.

View Article and Find Full Text PDF

Engineering Planar Crystallinity in Nitrogen-Vacancy-Incorporated Carbon Nitride for Efficient Photoredox Catalysis.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.

The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.

View Article and Find Full Text PDF

Background: Cancer remains one of the most significant public health challenges worldwide. A widely recognized hallmark of cancer is the ability to sustain proliferative signaling, which is closely tied to various cell cycle processes. Centromere Protein A (CENPA), a variant of the standard histone H3, is crucial for selective chromosome segregation during the cell cycle.

View Article and Find Full Text PDF

Identification of Rht1 for plant height reduction in two wheat mutants and the effects on yield components.

J Plant Physiol

January 2025

State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Plant height determines lodging resistance and is closely linked to yield stability in wheat. In this study, we identified two semi-dwarf wheat mutants, designated je0370 and je0344, using the winter wheat cultivar Jing411 as the wild type (WT). Field experiments revealed that the plant height of these two mutants was significantly lower than that of the WT.

View Article and Find Full Text PDF

Cu(In, Ga)S demonstrates potential as a top cell material for tandem solar cells. However, achieving high efficiencies has been impeded by open-circuit voltage (V) deficits arising from In-rich and Ga-rich composition segregation in the absorber layer. This study presents a significant improvement in the optoelectronic quality of Cu(In, Ga)S films through the mitigation of composition segregation in three-stage co-evaporated films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!