Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2022.111427DOI Listing

Publication Analysis

Top Keywords

floral nectar
16
nectar rich
12
ornamental tobacco
8
tobacco floral
8
rich source
8
peptides
8
peptides floral
8
nectar
5
floral
4
source antimicrobial
4

Similar Publications

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.

View Article and Find Full Text PDF

To understand the reproductive strategies of the typically introduced plant and to compare the pollination efficiency of its different pollinators, we observed, measured, and recorded the flowering dynamics, floral traits, and visiting insects of . Furthermore, we compared the body size, visitation rate, and pollination efficiency of the pollination insects of . The results indicated that, despite exhibiting specialized moth pollination characteristics based on similarities in flower features to other moth-pollinated species, actually presented a generalized pollination system.

View Article and Find Full Text PDF

Plants produce floral nectar as a reward for pollinators, which contains carbohydrates and amino acids (AAs). We designed experiments to test whether pollinators could exert selection pressure on the profiles of AAs in nectar. We used HPLC to measure the free AAs and sugars in the nectar of 102 UK plant species.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how factors like plant species, temperature, and microbial competition affect the composition of microbes in floral nectar, which is important for plant health and pollination.
  • By inoculating yeasts and bacteria into nectars of 31 plant species and analyzing the resulting communities, researchers found that plant species strongly influence microbial abundance and composition, with variations attributed to plant phylogeny and nectar peroxide content.
  • Higher temperatures were shown to decrease microbial diversity and affect growth; consistent microbial communities could help plants and pollinators adapt, highlighting the significance of host identity and environmental conditions in microbial community dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!