Sphingomyelin (SM) is an abundant plasma membrane and plasma lipoprotein sphingolipid. We previously reported that ATP-binding cassette family A protein 1 (ABCA1) deficiency in humans and mice decreases plasma SM levels. However, overexpression, induction, downregulation, inhibition, and knockdown of ABCA1 in human hepatoma Huh7 cells did not decrease SM efflux. Using unbiased siRNA screening, here, we identified that ABCA7 plays a role in the biosynthesis and efflux of SM without affecting cellular uptake and metabolism. Since loss of function mutations in the ABCA7 gene exhibit strong associations with late-onset Alzheimer's disease across racial groups, we also studied the effects of ABCA7 deficiency in the mouse brain. Brains of ABCA7-deficient (KO) mice, compared with WT, had significantly lower levels of several SM species with long chain fatty acids. In addition, we observed that older KO mice exhibited behavioral deficits in cognitive discrimination in the active place avoidance task. Next, we performed synaptic transmission studies in brain slices obtained from older mice. We found anomalies in synaptic plasticity at the intracortical synapse in layer II/III of the lateral entorhinal cortex but not in the hippocampal CA3-CA1 synapses in KO mice. These synaptic abnormalities in KO brain slices were rescued with extracellular SM supplementation but not by supplementation with phosphatidylcholine. Taken together, these studies identify a role of ABCA7 in brain SM metabolism and the importance of SM in synaptic plasticity and cognition, as well as provide a possible explanation for the association between ABCA7 and late-onset Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513280PMC
http://dx.doi.org/10.1016/j.jbc.2022.102411DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
atp-binding cassette
8
abca7 deficiency
8
cognitive discrimination
8
entorhinal cortex
8
late-onset alzheimer's
8
alzheimer's disease
8
older mice
8
brain slices
8
abca7
6

Similar Publications

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

Segregation-to-integration transformation model of memory evolution.

Netw Neurosci

December 2024

Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain.

Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Efficacy and working mechanisms of a Go/No-Go task-based inhibition training in smoking: A randomized-controlled trial.

Behav Res Ther

December 2024

Neuronal Plasticity Working Group, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany. Electronic address:

Objective: Deficits in inhibitory control contribute to smoking behavior. Inhibitory control training (ICT), which involves repeatedly inhibiting responses to general or substance-related stimuli, shows promise in reducing problematic substance use. This preregistered randomized-controlled trial is the first to investigate the efficacy of general and smoking-specific Go/No-Go task-based ICT on smoking behavior compared to control groups receiving no ICT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!