Purpose: Early posttraumatic seizures (EPTS) occur after pediatric traumatic brain injury and have been associated with unfavorable outcomes. We aimed to characterize the relationship among quantitative EEG characteristics of early posttraumatic seizures, cerebral and somatic physiologic measures.

Methods: Differences in baseline physiologic, neuroimaging, and demographic characteristics between those with and without early posttraumatic seizures were investigated using Mann-Whitney U test or Fisher exact test. Multivariable dynamic structural equations modeling was used to investigate time series associations between ictal quantitative EEG characteristics with intracranial pressure, arterial blood pressure, heart rate (HR), and cerebral regional oximetry. Quantitative EEG characteristics included amplitude, total power, spectral edge frequency, peak value frequency, complexity, and periodicity.

Results: Among 72 children, 146 seizures were identified from 19 patients. Early posttraumatic seizures were associated with younger age ( P = 0.0034), increased HR ( P = 0.0018), and increased Glasgow Outcome Scale-Extended scores ( P = 0.0377). Group dynamic structural equations modeling analysis of the first seizure for patients demonstrated that intracranial pressure is negatively associated with spectral edge frequency (standardized regression coefficient -0.12, 99% credible interval [-0.21 to -0.04]), and HR is positively associated with peak value frequency (standardized regression coefficient 0.16, [0.00-0.31]). Among nine patients with seizures arising over the frontal lobe regions, HR was positively associated with peak value frequency (standardized regression coefficient 0.26 [0.02-0.50]) and complexity (standardized regression coefficient 0.14 [0.03-0.26]). Variation in strength and direction of associations was observed between subjects for relationships that were significant during group analysis.

Conclusions: Quantitative EEG characteristics of pediatric early posttraumatic seizures are associated with variable changes in cerebral and systemic physiology, with spectral edge frequency negatively associated with intracranial pressure and peak value frequency positively associated with HR.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNP.0000000000000965DOI Listing

Publication Analysis

Top Keywords

early posttraumatic
24
posttraumatic seizures
24
quantitative eeg
16
eeg characteristics
16
peak frequency
16
standardized regression
16
regression coefficient
16
characteristics early
12
intracranial pressure
12
spectral edge
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!