Introduction: One major challenge in PET radiomics is its sensitivity to noise. Low signal-to-noise ratio (SNR) affects not only the precision but also the accuracy of quantitative metrics extracted from the images resulting in noise-induced bias. This phantom study aims to identify the radiomic features that are robust to noise in terms of precision and accuracy and to explore some methods that might help to correct noise-induced bias.
Methods: A phantom containing three 18F-FDG filled 3D printed inserts, reflecting heterogeneous tracer uptake and realistic tumor shapes, was used in the study. The three different phantom inserts were filled and scanned with three different tumor-to-background ratios, simulating a total of nine different tumors. From the 40-minute list-mode data, ten frames each for 5 s, 10 s, 30 s, and 120 s frame duration were reconstructed to generate images with different noise levels. Under these noise conditions, the precision and accuracy of the radiomic features were analyzed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM) respectively. Based on the ICC and SDM values, the radiomic features were categorized into four groups: poor, moderate, good, and excellent precision and accuracy. A "difference image" created by subtracting two statistically equivalent replicate images was used to develop a model to correct the noise-induced bias. Several regression methods (e.g., linear, exponential, sigmoid, and power-law) were tested. The best fitting model was chosen based on Akaike information criteria.
Results: Several radiomic features derived from low SNR images have high repeatability, with 68% of radiomic features having ICC ≥ 0.9 for images with a frame duration of 5 s. However, most features show a systematic bias that correlates with the increase in noise level. Out of 143 features with noise-induced bias, the SDM values were improved based on a regression model (53 features to excellent and 67 to good) indicating that the noise-induced bias of these features can be, at least partially, corrected.
Conclusion: To have a predictive value, radiomic features should reflect tumor characteristics and be minimally affected by noise. The present study has shown that it is possible to correct for noise-induced bias, at least in a subset of the features, using a regression model based on the local image noise estimates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409510 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272643 | PLOS |
Radiat Oncol
January 2025
Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
Background: Several studies have suggested that lung tissue heterogeneity is associated with overall survival (OS) in lung cancer. However, the quantitative relationship between the two remains unknown. The purpose of this study is to investigate the prognostic value of whole lung-based and tumor-based radiomics for OS in LA-NSCLC treated with definitive radiotherapy.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Thoracic Surgery, The Fifth Clinical Medical College of Henan, University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China.
Objective: In clinical practice, diagnosing the benignity and malignancy of solid-component-predominant pulmonary nodules is challenging, especially when 3D consolidation-to-tumor ratio (CTR) ≥ 50%, as malignant ones are more invasive. This study aims to develop and validate an AI-driven radiomics prediction model for such nodules to enhance diagnostic accuracy.
Methods: Data of 2,591 pulmonary nodules from five medical centers (Zhengzhou People's Hospital, etc.
Acad Radiol
January 2025
Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China (Y.R., W.L., Y.Z., S.K., F.C.). Electronic address:
Rationale And Objectives: Non-invasive assessment of renal fibrosis in patients with chronic kidney disease (CKD) remains a clinical challenge. This study aims to integrate radiomics and clinical factors to develop an end-to-end pipeline for predicting interstitial fibrosis (IF) in CKD patients.
Materials And Methods: This retrospective study included 80 patients with CKD, with 53 patients in training set and 27 patients in test set.
J Immunother Cancer
January 2025
Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
Background: Numerous studies have demonstrated limited survival benefits of transarterial chemoembolization (TACE) alone in the treatment of intermediate-stage hepatocellular carcinoma (HCC) beyond up-to-seven criteria. The advent of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has opened new avenues for HCC treatment. However, TACE combined with ICIs has not been investigated for patients with intermediate-stage HCC beyond the up-to-seven criteria.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Radiological Sciences, University of California Los Angeles, 924 Westwood Blvd, Los Angeles, California, 90095, UNITED STATES.
Objective: The study aims to systematically characterize the effect of CT parameter variations on images and lung radiomic and deep features, and to evaluate the ability of different image harmonization methods to mitigate the observed variations.
Approach: A retrospective in-house sinogram dataset of 100 low-dose chest CT scans was reconstructed by varying radiation dose (100%, 25%, 10%) and reconstruction kernels (smooth, medium, sharp). A set of image processing, convolutional neural network (CNNs), and generative adversarial network-based (GANs) methods were trained to harmonize all image conditions to a reference condition (100% dose, medium kernel).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!