Insufficient pollination leads to low and unstable production of oil tree peony. Supplementary managed honeybees (Apis mellifera L.) in agricultural ecosystems is a common practice for addressing the problem. At this study site (N 34°38'30″ and E 112°39'43″, with an altitude of 125.5 m), we set up four pollination areas (low-density bee pollination group (LDBP), high-density bee pollination group (HDBP), blank control group (CK1) and field control group (CK2)) to examine the pollination effectiveness of different densities of honeybee supplementation on oil tree peony (Paeonia ostii). Our work demonstrated that bee-pollination increased fruit size and growth rate. On average, bee-pollinated (LDBP) plants produced 63.16% more number of seeds per plant, showed also 53.47% more weight of seeds per plant than those in CK2. Also, seeds of LDBP contained, on average, 26.15% more oil content than CK2. Kernel percent and seed oil fatty acid content, however, were unaffected (F = 1.759, p = 0.074). Compared with LDBP, weight of seeds per plant and oil content with HDBP decreased by 21.89% and 2.63%, respectively. Following the same trend, compared with LDBP, HDBP slowed fruit growth and reduced fruit size. Our results showed that insufficient pollination limits fruit set in oil tree peony, while supplementary reasonable bee density in the field for pollination is an important strategy to maximize fruit yield.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409588PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272921PLOS

Publication Analysis

Top Keywords

oil tree
12
tree peony
12
seeds plant
12
apis mellifera
8
pollination
8
fruit growth
8
growth rate
8
fruit yield
8
paeonia ostii
8
insufficient pollination
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!