Thermadapt Shape Memory Polymers Enabling Spatially Regulated Plasticity.

ACS Macro Lett

ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.

Published: September 2022

Converting planar polymer films into sophisticated 3D structures with a facile and effective method is highly challenging yet desirable for device applications in the real world. Dynamic covalent polymer networks enable permanent shape transformations from 2D sheets to 3D structures, but either sophisticated molecular design or a complex fabrication method is required. Here, we report a shape memory polymer cross-linked by ester bonds, which can be activated upon heating after photoexposure to release the catalyst for the transesterification. The region that is activated via the bond exchange can be patterned due to the spatial-temporal selectivity of the photoexposure. Accordingly, the material presents a localized heterogeneity in stress relaxation upon stretching. The exposed and the unexposed regions show respectively plastic deformation and elastic recovery after removal of the external force, which finally make the 2D sheet transform into a 3D structure. The decoupling of the activated region (photoexposure) and activated condition (heating) enables facile chemical design and fabrication for 2D-to-3D shape morphing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.2c00330DOI Listing

Publication Analysis

Top Keywords

shape memory
8
thermadapt shape
4
memory polymers
4
polymers enabling
4
enabling spatially
4
spatially regulated
4
regulated plasticity
4
plasticity converting
4
converting planar
4
planar polymer
4

Similar Publications

A Novel Polytetrahydrofuran-Based Shape Memory Polyurethane Enhanced by Polyglycolide-Block-Polytetrahydrofuran-Block-Polyglycolide Copolymer.

Polymers (Basel)

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.

View Article and Find Full Text PDF

The paper starts by describing the manufacturing process of cups thermoformed from extruded foils of 80% recycled PET (80r-PET), which comprises heating, hot deep drawing and cooling. The 80r-PET foils were heated up to 120 °C, at heating rates of the order of hundreds °C/min, and deep drawn with multiple punchers, having a depth-to-width ratio exceeding 1:1. After puncher-assisted deformation, the cups were air blown away from the punchers, thus being "frozen" in the deformed state.

View Article and Find Full Text PDF

Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment.

View Article and Find Full Text PDF

Density Functional Theory Insights into Conduction Mechanisms in Perovskite-Type RCoO Nanofibers for Future Resistive Random-Access Memory Applications.

Molecules

December 2024

Inner Mongolia Key Lab of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.

In the era of artificial intelligence and Internet of Things, data storage has an important impact on the future development direction of data analysis. Resistive random-access memory (RRAM) devices are the research hotspot in the era of artificial intelligence and Internet of Things. Perovskite-type rare-earth metal oxides are common functional materials and considered promising candidates for RRAM devices because their interesting electronic properties depend on the interaction between oxygen ions, transition metals, and rare-earth metals.

View Article and Find Full Text PDF

In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!