Background: Various methods based on gold nanoparticles (AuNPs) have been applied to enhance the photothermal effect. Among these methods, combining gold nanoparticles and stem cells has been suggested as a new technique for elevating the efficiency of photothermal therapy (PT) in terms of enhancing tumor targeting effect. However, to elicit the efficiency of PT using gold nanoparticles and stem cells, delivering large amounts of AuNPs into stem cells without loss should be considered.
Methods: AuNPs, AuNPs-decorated silica nanoparticles, and silica-capped and AuNPs-decorated silica nanoparticles (SGSs) were synthesized and used to treat human mesenchymal stem cells (hMSCs). After evaluating physical properties of each nanoparticle, the concentration of each nanoparticle was estimated based on its cytotoxicity to hMSCs. The amount of AuNPs loss from each nanoparticle by exogenous physical stress was evaluated after exposing particles to a gentle shaking. After these experiments, in vitro and in vivo photothermal effects were then evaluated.
Results: SGS showed no cytotoxicity when it was used to treat hMSCs at concentration up to 20 μg/mL. After intravenous injection to tumor-bearing mice, SGS-laden hMSCs group showed significantly higher heat generation than other groups following laser irradiation. Furthermore, in vivo photothermal effect in the hMSC-SGS group was significantly enhanced than those in other groups in terms of tumor volume decrement and histological outcome.
Conclusion: Our results suggest that additional silica layer in SGSs could protect AuNPs from physical stress induced AuNPs loss. The strategy applied in SGS may offer a prospective method to improve PT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679086 | PMC |
http://dx.doi.org/10.1007/s13770-022-00468-y | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China.
Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.
View Article and Find Full Text PDFBiol Reprod
January 2025
Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan.
Artificially induced haploidy is lethal in vertebrates, although it is useful for genetic screening and genome editing due to its single set of genomes. Haploid embryonic stem (ES) cell lines in mammals contribute to genetic studies and the production of gametes derived from haploid ES cells. In fish breeding, doubled haploids (DHs) induced by artificially induced gynogenesis are used to generate isogenic gametes for cloning purposes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.
Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.
View Article and Find Full Text PDFTissue Eng Part B Rev
January 2025
Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China.
Osteoporosis, affecting the entire skeletal system, can cause bone mass to diminish, thereby reducing bone strength and elevating fracture risk. Fracture nonunion and bone defects are common in patients with fractures, and pain and loss of function may cause serious distress. The search for a new therapeutic strategy is essential because of the limited therapeutic options available.
View Article and Find Full Text PDFTissue Eng Part B Rev
January 2025
Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.
The increasing number of elderly people across the globe has led to a rise in osteoporosis and bone fractures, significantly impacting the quality of life and posing substantial health and economic burdens. Despite the development of tissue-engineered bone constructs and stem cell-based therapies to address these challenges, their efficacy is compromised by inadequate vascularization and innervation during bone repair. Innervation plays a pivotal role in tissue regeneration, including bone repair, and various techniques have been developed to fabricate innervated bone scaffolds for clinical use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!