Anaerobic co-digestion can effectively break the limitations of mono-digestion. However, there are still some problems such as long residence time, unsatisfactory methane yield, and unstable performance for co-digestion of sewage sludge (SS) and food waste (FW). Therefore, the SS in the reactor treating co-digestion of SS and FW is considered to be pretreated by thermal hydrolysis. In this work, the anaerobic co-digestion of SS of thermal hydrolysis pretreatment (THP) and FW significantly improved the stability, methane production of the digestive reactor, and dewaterability of the digested sludge. The R6 obtained the most cumulative methane production (315.76 mL/g VS). In addition, compared to R3, the cumulative methane production and maximum methane production rate of R5 increased by 9.93% and 14.56%, respectively. The dewaterability of R4, R5, and R6 was improved, while the dewatering performance of the R3 decreased to a greater extent. The results of the kinetic model fitting were consistent with the experimental results. Among them, the hydrolysis constants (K) of anaerobic co-digestion of THP-SS and FW were 0.121, 0.130, and 0.114 d, respectively, which were higher than those of other groups. And the estimated lag time (λ) of co-digestion was also lower than that of mono-digestion groups. Microbial community analysis indicated that the bacterial diversity and richness of anaerobic co-digested groups of THP-SS and FW were enhanced, while the methanogens with acetoclastic pathway became the main methanogenic microorganisms. This work provides essential information on anaerobic co-digestion containing different THP-SS contents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2022.2118083 | DOI Listing |
Bioresour Technol
January 2025
Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:
This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.
View Article and Find Full Text PDFThe present study demonstrates the significance of the C/N ratio and double helical ribbon (DHR) impeller in the anaerobic co-digestion (AnCo-D) of sugar refining process (SRP) effluent and molasses-based distillery spent wash (DSW) for improved biogas production. Both SRP & DSW were mixed in different percentages to achieve an optimum C/N ratio. Further biomethane potential analysis of mixed feeds with different C/N ratios was performed.
View Article and Find Full Text PDFHeliyon
December 2024
Departments of Water Supply and Environmental Engineering, Arba Minch Water Technology Institute (AWTI), P. O. Box 21, Arba Minch, Ethiopia.
Chemosphere
February 2025
Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China. Electronic address:
Garlic and chili are widely used as food flavoring agents in food cooking, therefore might be accumulated in large amounts in food waste (FW). The effects of garlic and chili on the dissolution, hydrolysis, acidification and methanation in an anaerobic co-digestion system were investigated during the combined co-digestion of FW and excess sludge (ES). Additionally, the transformation of phosphorus form and microbial metabolism changes during the process were analyzed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada. Electronic address:
The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m/day) with and without biochar (BC) addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!