Polycyclic aromatic hydrocarbons (PAHs) have attracted remarkable multidisciplinary attention due to their intriguing π-π stacking configurations, showing enormous opportunity for their use in a variety of advanced applications. To secure progress, detailed knowledge on PAHs' interfacial properties is required. Employing molecular dynamics, we probe the wetting properties of brine droplets (KCl, NaCl, and CaCl) on sII methane-ethane hydrate surfaces immersed in various oil solvents. Our simulations show synergistic effects due to the presence of PAHs compounded by ion-specific effects. Our analysis reveals phenomenological correlations between the wetting properties and a combination of the binding free-energy difference and entropy changes upon oil solvation for PAHs at oil/brine and oil/hydrate interfaces. The detailed thermodynamic analysis conducted upon the interactions between PAHs and various interfaces identifies molecular-level mechanisms responsible for wettability alterations, which could be applicable for advancing applications in optics, microfluidics, biotechnology, medicine, as well as hydrate management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9442800 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.2c01846 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFChemistry
December 2024
Panepistimio Ioanninon, Chemistry, Panepistimioupolis, 45110, Ioannina, GREECE.
Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes.
View Article and Find Full Text PDFDent Mater
December 2024
Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre 2492, Brazil; Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre 2492, Brazil. Electronic address:
Objectives: To evaluate the self-etch bonding potential of universal adhesive systems with varying acidic compositions by analyzing the wettability properties, topographical change, and microshear bond strength (µSBS) to enamel.
Methods: Eight universal adhesives were tested: All-Bond Universal (Bisco), Ambar Universal (FGM), Gluma Bond Universal (Kulzer), OptiBond Universal (Kerr), Peak Universal Bond (Ultradent), Prime&Bond Universal (Dentsply), Singlebond Universal (3 M ESPE), and Tetric N-Bond Universal (Ivoclar). Bovine incisors were prepared and treated with each adhesive according to the manufacturer's instructions.
Int J Biol Macromol
December 2024
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil. Electronic address:
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Southeast University, Nanjing, 211189, China.
Collapsible loess soils, known for their significant volume reduction upon the wetting, pose critical challenges in the geotechnical engineering. The estimation of the wetting-induced settlement is crucial for the foundation design and the determination of the negative skin friction on the pile. In this paper, a new method is proposed to estimate the wetting induced collapse from the wetting soil-water characteristic curve (SWCC) and the index properties of the loess soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!