Aflatoxin contamination poses serious health concerns to consumers of peanut and peanut products. This study aimed at investigating the response of peanuts to Aspergillus flavus infection and aflatoxin accumulation. Isolates of A. flavus were characterised either as aflatoxigenic or non-aflatoxigenic using multiple cultural techniques. The selected isolates were used in an in vitro seed colonisation (IVSC) experiment on two A. flavus-resistant and susceptible peanut genotypes. Disease incidence, severity, and aflatoxin accumulation were measured. Genotypes differed significantly (p < 0.001) in terms of the incidence and severity of aflatoxigenic and non-aflatoxigenic A. flavus infection with the non-aflatoxigenic isolate having significantly higher incidence and severity values. There was no accumulation of aflatoxins in peanut genotypes inoculated with non-aflatoxigenic isolate, indicating its potential as a biocontrol agent. Inoculations with the aflatoxigenic isolate resulted in the accumulation of aflatoxin B1 and G1 in all the peanut genotypes. Aflatoxin B2 was not detected in ICGV−03401 (resistant genotype), while it was present and higher in Manipinta (susceptible genotype) than L027B (resistant genotype). ICGV−03401 can resist fungal infection and aflatoxin accumulation than L027B and Manipinta. Non-aflatoxigenic isolate detected in this study could further be investigated as a biocontrol agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414427PMC
http://dx.doi.org/10.3390/toxins14080536DOI Listing

Publication Analysis

Top Keywords

peanut genotypes
16
aflatoxin accumulation
12
incidence severity
12
non-aflatoxigenic isolate
12
susceptible peanut
8
genotypes aflatoxin
8
flavus infection
8
infection aflatoxin
8
aflatoxigenic non-aflatoxigenic
8
biocontrol agent
8

Similar Publications

The genomic pattern of insertion/deletion variations during rice improvement.

BMC Genomics

December 2024

Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.

Background: Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.

Results: In this study, we extracted INDELs from resequencing data of 148 rice improved varieties.

View Article and Find Full Text PDF

Aflatoxin B1 Contamination Association with the Seed Coat Biochemical Marker Polyphenol in Peanuts Under Intermittent Drought.

J Fungi (Basel)

December 2024

Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University, 700 University Blvd, MSC 228, Kingsville, TX 78363, USA.

Aflatoxin B1 (AFB1) contamination (AC) increases as the severity of drought stress increases in peanuts. Identifying drought-tolerant (DT) genotypes with resistance to colonization and/or infection may aid in developing peanuts resistant to aflatoxin contamination in the semi-arid tropics. The goal of this study is to identify DT genotypes with seed coat biochemical resistance to infestation and aflatoxin contamination.

View Article and Find Full Text PDF

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

and Salmonellosis in Wild Birds.

Animals (Basel)

December 2024

Bristol Veterinary School, University of Bristol, Bristol B40 5DU, UK.

is an important bacterial pathogen in humans and warm-blooded animals. Wild bird species represent both a potential reservoir for zoonotic infection and as a susceptible host to infection by host-adapted variants. Historically, wild birds were considered to be a major source of infection in livestock, but in recent years, it has been more apparent that birds are more likely to act as a reservoir for recycling infection on farms rather than as the primary source of infection.

View Article and Find Full Text PDF
Article Synopsis
  • Gynophore-pod strength is crucial for the quality of mechanized harvesting in peanuts, yet the molecular factors regulating it are not well-understood.
  • A study measuring this strength across different environments involved a recombinant inbred line population, leading to QTL mapping and further analysis.
  • Results indicated that both genetics and environmental factors influence gynophore-pod strength, with two stable QTLs identified, higher lignin content linked to stronger pods, and a focus on phenylpropanoid biosynthesis as a key pathway.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!