The aim of this study was to investigate the ecotoxicity of polyvinylidene difluoride (PVDF) and polylactic acid (PLA) microplastics (MPs) in two marine zooplankton: the crustacean and the cnidarian sp. (common jellyfish). To achieve this goal, (i) MP uptake, (ii) immobility, and (iii) behavior (swimming speed, pulsation mode) of crustacean larval stages and jellyfish ephyrae exposed to MPs concentrations (1, 10, 100 mg/L) were assessed for 24 h. Using traditional and novel techniques, i.e., epifluorescence microscopy and 3D holotomography (HT), PVDF and PLA MPs were found in the digestive systems of the crustaceans and in the gelatinous tissue of jellyfish. Immobility was not affected in either organism, while a significant behavioral alteration in terms of pulsation mode was found in jellyfish after exposure to both PVDF and PLA MPs. Moreover, PLA MPs exposure in jellyfish induced a toxic effect (EC50: 77.43 mg/L) on the behavioral response. This study provides new insights into PLA and PVDF toxicity with the potential for a large impact on the marine ecosystem, since jellyfish play a key role in the marine food chain. However, further investigations incorporating additional species belonging to other trophic levels are paramount to better understand and clarify the impact of such polymers at micro scale in the marine environment. These findings suggest that although PVDF and PLA have been recently proposed as innovative and, in the case of PLA, biodegradable polymers, their effects on marine biota should not be underestimated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416274 | PMC |
http://dx.doi.org/10.3390/toxics10080479 | DOI Listing |
Sci Rep
November 2024
Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
Nanocomposite films of (30% PVC/70% PVDF) blend containing silver nanoparticles were synthesized via pulsed laser ablation route (PLA). Changes in physical characterization of PVC/PVDF blend before and after the incorporation of AgNPs have been studied. FTIR results confirms the interaction between AgNPs and PVC/PVDF.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China. Electronic address:
Electronic skin (e-skin) inspired by the sensory function of the skin demonstrates broad application prospects in health, medicine, and human-machine interaction. Herein, we developed a self-powered all-fiber bio-inspired e-skin (AFBI E-skin) that integrated functions of antifouling, antibacterial, biocompatibility and breathability. AFBI E-skin was composed of three layers of electrospun nanofibrous films.
View Article and Find Full Text PDFMater Today Bio
June 2024
Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
Catheter-associated urinary tract infection (CAUTI) is a common clinical problem, especially during long-term catheterization, causing additional pain to patients. The development of novel antimicrobial coatings is needed to prolong the service life of catheters and reduce the incidence of CAUTIs. Herein, we designed an antimicrobial catheter coated with a piezoelectric zinc oxide nanoparticles (ZnO NPs)-incorporated polyvinylidene difluoride-hexafluoropropylene (ZnO-PVDF-HFP) membrane.
View Article and Find Full Text PDFSensors (Basel)
April 2024
Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Low-cost air quality sensors (LCSs) are becoming more ubiquitous as individuals and communities seek to reduce their exposure to poor air quality. Compact, efficient, and aesthetically designed sensor housings that do not interfere with the target air quality measurements are a necessary component of a low-cost sensing system. The selection of appropriate housing material can be an important factor in air quality applications employing LCSs.
View Article and Find Full Text PDFSensors (Basel)
April 2024
Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research "Demokritos", Patr. Gregoriou E & 27 Neapoleos Str., Aghia Paraskevi, 15310 Athens, Greece.
Polylactic acid (PLA) is one of the most widely used materials for fused deposition modeling (FDM) 3D printing. It is a biodegradable thermoplastic polyester, derived from natural resources such as corn starch or sugarcane, with low environmental impact and good mechanical properties. One important feature of PLA is that its properties can be modulated by the inclusion of nanofillers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!