Methyl Violet (MV) was removed from aqueous solutions by adsorption onto halloysite nanoclay (HNC) employing equilibrium, kinetics, thermodynamic data, molecular modellingR (MD), and Monte Carlo (MC) simulations. The chosen experimental variables were pH, temperature, starting MV concentration, contact time, and adsorbent dosage. The adsorption rate was determined to increase with increasing contact time, initial dye concentration, pH, and temperature. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherms were utilized to determine the adsorption capacity of HNC. The Langmuir equation matched equilibrium data better than the other models, whereas the pseudo-second-order model better described kinetic data, and thermodynamic analyses revealed that the adsorption process was spontaneous, endothermic, and physisorption-based. This study focused on two distinct molecular mechanics-based theoretical approaches (MC and MD). These techniques enabled a molecular comprehension of the interaction between the MV molecule and the halloysite surface. Theoretical results were consistent with experimental findings. The outcomes revealed that HNC is an excellent dye adsorbent for industrial effluents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412486PMC
http://dx.doi.org/10.3390/toxics10080445DOI Listing

Publication Analysis

Top Keywords

methyl violet
8
adsorption halloysite
8
halloysite nanoclay
8
contact time
8
adsorption
5
removal methyl
4
violet aqueous
4
aqueous solution
4
solution adsorption
4
nanoclay experiment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!