Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to its heterogeneity, the prediction of posttraumatic stress disorder (PTSD) development after traumtic injury is difficult. Recent machine learning approaches have yielded insight into predicting PTSD symptom trajectories. Using data collected within 1 month of traumatic injury, we applied eXtreme Gradient Boosting (XGB) to classify admitted and discharged patients (hospitalized, n = 192; nonhospitalized, n = 214), recruited from a Level 1 trauma center, according to PTSD symptom trajectories. Trajectories were identified using latent class mixed models on PCL-5 scores collected at baseline, 1-3 months posttrauma, and 6 months posttrauma. In both samples, nonremitting, remitting, and resilient PTSD symptom trajectories were identified. In the admitted patient sample, a unique delayed trajectory emerged. Machine learning classifiers (i.e., XGB) were developed and tested on the admitted patient sample and externally validated on the discharged sample with biological and clinical self-report baseline variables as predictors. For external validation sets, prediction was fair for nonremitting versus other trajectories, areas under the curve (AUC = .70); good for nonremitting versus resilient trajectories, AUCs = .73-.76; and prediction failed for nonremitting versus remitting trajectories, AUCs = .46-.48. However, poor precision (< .57) across all models suggests limited generalizability of nonremitting symptom trajectory prediction from admitted to discharged patient samples. Consistency in symptom trajectory identification across samples supports prior studies on the stability of PTSD symptom trajectories following trauma exposure; however, continued work and replication with larger samples are warranted to understand overlapping and unique predictive features of PTSD in different traumatic injury populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jts.22868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!