Blood purification is performed to control cytokines in critically ill patients. The relationship between the clearance (CL) and the membrane area during adsorption is not clear. We hypothesized that the CL increases with the hydrophobic area when hydrophobic binding contributes to cytokine adsorption. We investigated the relationship between the hemofilter membrane area and the CL of the high mobility group box 1 protein (HMGB-1) and interleukin-6 (IL-6). We performed experimental hemofiltration in vitro using polymethyl methacrylate membranes CH-1.8W (1.8 m) and CH-1.0N (1.0 m), as well as polysulfone membrane NV-18X (1.8 m). After adding 100 mg of HMGB1 or 10 μg of IL-6 into the test solution, experimental hemofiltration was conducted for 360 min in a closed-loop circulation system, and the same amount of HMGB1 and IL-6 was added after 180 min. With CH-1.8W and CH-1.0N, both HMGB-1 and IL-6 showed a rapid concentration decrease of more than 70% at 180 min and 360 min after the re-addition. At 15 min, the CL of HMGB-1 was CH-1.8W: 28.4 and CH-1.0N: 19.8, and that of IL-6 was CH-1.8W: 41.1 and CH-1.0N: 25.4. CH-1.8W and CH-1.0N removed HMGB1 and IL-6 by adsorption and CH-1.8W was superior in CL, which increased with a greater membrane area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413121PMC
http://dx.doi.org/10.3390/membranes12080811DOI Listing

Publication Analysis

Top Keywords

membrane area
16
ch-18w ch-10n
12
polymethyl methacrylate
8
experimental hemofiltration
8
360 min
8
hmgb1 il-6
8
180 min
8
il-6
6
ch-18w
6
area
5

Similar Publications

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Introduction: Respiratory syncytial virus (RSV) is the leading cause of hospitalization among US infants. Characterizing service utilization during infant RSV hospitalizations may provide important information for prioritizing resources and interventions.

Objective: The objective of this study was to describe the procedures and services received by infants hospitalized during their first RSV episode in their first RSV season, in addition to what proportion of infants died during this hospitalization.

View Article and Find Full Text PDF

Psoriasis (PsO) is a chronic immune-mediated disease of the skin. Psoriatic arthritis (PsA) is a prevalent chronic inflammatory disease that is associated with joint destruction and disability. The presence of PsO is the single greatest risk factor for the development of PsA.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!