A proton battery is a hybrid battery produced by combining a hydrogen fuel cell and a battery system in an attempt to obtain the advantages of both systems. As the battery life of a single proton battery is not good, the proton battery stack is developed by connecting in parallel, which can greatly improve the battery life of proton batteries. In order to obtain important information about the proton battery stack in real time, a flexible six-in-one microsensor is embedded in the proton battery stack. This study has successfully developed a health diagnostic tool for a proton battery stack using micro-electro-mechanical systems (MEMS) technology. This study also focused on the innovatively developed hydrogen microsensor, and integrated the voltage, current, temperature, humidity, and flow microsensors, as previously developed by our laboratory, to complete the flexible six-in-one microsensor. Six important internal physical parameters were simultaneously measured during the entire operation of the proton battery stack. It also established a complete database and monitor system in real time to detect the internal health status of the proton cell stack and observe if there were problems, such as water accumulation, aging, or failure, in order to understand the changes and effects of the various physical quantities of long-term operation. The study found that the proton batteries exhibited significant differences in the hydrogen absorb rates and hydrogen release rates. The ceramic circuit board used in the original sensor is replaced by a flexible board to improve problems such as peeling and breaking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412423 | PMC |
http://dx.doi.org/10.3390/membranes12080779 | DOI Listing |
Nanomaterials (Basel)
December 2024
The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Single-crystal high-nickel oxide with an integral structure can prevent intergranular cracks and the associated detrimental reactions. Yet, its low surface-to-volume ratio makes surficial degradation a more critical factor in electrochemical performance. Herein, artificial proton-rich (ammonium bicarbonate) shell is successfully introduced on the nickel-rich LiNiCoMnO single crystals for in situ electrochemically conversing into inorganic maskant to enhance stability of cathode.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
NUAA: Nanjing University of Aeronautics and Astronautics, Material Science and Technology, CHINA.
Proton electrochemistry holds eminent potential for developing high capacity and rate energy storage devices in the post-lithium era. However, the decomposition of water in acidic aqueous electrolytes causes electrode corrosion, leading to capacity fading. Herein, we report a judicious design of molecular micellar aggregates as non-aqueous electrolytes for stable and high-voltage electrochemical proton storage.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Catalysis-Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:
Interfacial hydrogen bonds are pivotal in enhancing proton activity and accelerating the kinetics of proton-coupled electron transfer during electrocatalytic oxygen reduction reaction (ORR). Here we propose a novel FeCr bimetallic atomic sites catalyst supported on a honeycomb-like porous carbon layer, designed to optimize the microenvironment for efficient electrocatalytic ORR through the induction of interfacial hydrogen bonds. Characterizations, including X-ray absorption spectroscopy and in situ infrared spectroscopy, disclose the rearrangement of delocalized electrons due to the formation of FeCr sites, which facilitates the dissociation of interfacial water molecules and the subsequent formation of hydrogen bonds.
View Article and Find Full Text PDFSmall
December 2024
College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China.
Biomass with naturally ion-conducting segments (e.g., hydroxyl) holds promise for sustainable batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!