Applications of Ionic Liquids in Carboxylic Acids Separation.

Membranes (Basel)

"Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania.

Published: August 2022

Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass-solid/liquid extraction, or obtained through fermentation-liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414664PMC
http://dx.doi.org/10.3390/membranes12080771DOI Listing

Publication Analysis

Top Keywords

ionic liquids
12
extraction
5
applications ionic
4
liquids carboxylic
4
carboxylic acids
4
acids separation
4
separation ionic
4
liquids ils
4
ils considered
4
considered green
4

Similar Publications

Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Flexible solid-state-based supercapacitors are in demand for the soft components used in electronics. The increased attention paid toward solid-state electrolytes could be due to their advantages, including no leakage, special separators, and improved safety. Gel polymer electrolytes (GPEs) are preferred in the energy storage field, likely owing to their safety, lack of leakage, and compatibility with various separators as well as their higher ionic conductivity (IC) than traditional solid electrolytes.

View Article and Find Full Text PDF

Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm at 25 °C), a lithium transference number of 0.

View Article and Find Full Text PDF

Crown-Ether Coordination Compounds of Europium and 24-Crown-8.

Inorg Chem

December 2024

Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, D-76131 Karlsruhe, Germany.

Crown-ether coordination compounds of europium(II/III) and the crown ether (CHO) (24-crown-8, 24c8) are prepared, aiming at novel compounds, structures, and coordination modes as well as potential luminescence properties. By reacting EuCl, EuI, or EuCl with 24c8 or its derivatives in ionic liquids, the novel compounds [BuMeN][Eu(II)(NTf)] (), [BMIm][EuI] (), [EuCl(dibenzo-18c6)] (), [EuI(dibenzo-24c8)] (), [(Eu(III)Cl)(CHO)](24c8) (), and [Eu(III)Cl(24c8)]I () are obtained (BMIm: 1-butyl-3-methylimidazolium; EMIm: 1-ethyl-3-methylimidazolium). Based on different reaction conditions, different coordinative modes including the absence of the crown ether in the product (, ), splitting of the crown ether (), and coordination of 24c8 via six of eight oxygen atoms () and, finally, via all oxygen atoms () are observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!