Molecular Dynamics Simulation of Transport Mechanism of Graphene Quantum Dots through Different Cell Membranes.

Membranes (Basel)

Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Published: July 2022

Exploring the mechanisms underlying the permeation of graphene quantum dots (GQDs) through different cell membranes is key for the practical application of GQDs in medicine. Here, the permeation process of GQDs through different lipid membranes was evaluated using molecular dynamics (MD) simulations. Our results showed that GQDs can easily permeate into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipid membranes with low phospholipid molecule densities but cannot permeate into 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) lipid membranes with high phospholipid densities. Free energy calculation showed that a high-energy barrier exists on the surface of the POPE lipid membrane, which prevents GQDs from entering the cell membrane interior. Further analysis of the POPE membrane structure showed that sparsely arranged phospholipid molecules of the low-density lipid membrane facilitated the entry of GQDs into the interior of the membrane, compared to compactly arranged molecules in the high-density lipid membrane. Our simulation study provides new insights into the transmembrane transport of GQDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414618PMC
http://dx.doi.org/10.3390/membranes12080753DOI Listing

Publication Analysis

Top Keywords

lipid membranes
12
lipid membrane
12
molecular dynamics
8
graphene quantum
8
quantum dots
8
cell membranes
8
pope lipid
8
gqds
7
lipid
6
membrane
6

Similar Publications

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Preventive effect of sea bass protein-based high internal phase Pickering emulsion loaded with astaxanthin on DEHP-induced liver lipid metabolism disorder.

Int J Biol Macromol

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:

The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function.

View Article and Find Full Text PDF

Acidic pH of Early Endosomes Governs SARS-CoV-2 Transport in Host Cells.

J Biol Chem

December 2024

Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:

Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!