The gut-brain axis plays a role in major depressive disorder (MDD). Gut-bacterial metabolites are suspected to reduce low-grade inflammation and influence brain function. Nevertheless, randomized, placebo-controlled probiotic intervention studies investigating metabolomic changes in patients with MDD are scarce. The PROVIT study (registered at clinicaltrials.com NCT03300440) aims to close this scientific gap. PROVIT was conducted as a randomized, single-center, double-blind, placebo-controlled multispecies probiotic intervention study in individuals with MDD ( = 57). In addition to clinical assessments, metabolomics analyses (1H Nuclear Magnetic Resonance Spectroscopy) of stool and serum, and microbiome analyses (16S rRNA sequencing) were performed. After 4 weeks of probiotic add-on therapy, no significant changes in serum samples were observed, whereas the probiotic groups' ( = 28) stool metabolome shifted towards significantly higher concentrations of butyrate, alanine, valine, isoleucine, sarcosine, methylamine, and lysine. Gallic acid was significantly decreased in the probiotic group. In contrast, and as expected, no significant changes resulted in the stool metabolome of the placebo group. Strong correlations between bacterial species and significantly altered stool metabolites were obtained. In summary, the treatment with multispecies probiotics affects the stool metabolomic profile in patients with MDD, which sets the foundation for further elucidation of the mechanistic impact of probiotics on depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414726PMC
http://dx.doi.org/10.3390/metabo12080770DOI Listing

Publication Analysis

Top Keywords

multispecies probiotic
8
probiotic add-on
8
major depressive
8
randomized placebo-controlled
8
probiotic intervention
8
patients mdd
8
stool metabolome
8
probiotic
6
stool
5
provit study-effects
4

Similar Publications

The role of the microbiome in allergic dermatitis-related otitis externa: a multi-species comparative review.

Front Vet Sci

December 2024

Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization.

View Article and Find Full Text PDF

Background: The novel coronavirus (SARS-CoV-2) led to gastrointestinal manifestations in up to 50% of cases, with diarrhea being common, and probiotics have been suggested as a potential treatment.

Aim: This study aimed to assess changes in the microbiome and the effects of a multispecies probiotic in patients with COVID-19 in home quarantine through a fully remote telemedical approach.

Methods: Thirty patients were randomized to receive either the Ecologic AAD probiotic (Winclove Probiotics, Amsterdam, The Netherlands), on the market as OMNi-BiOTiC 10 (Allergosan, Austria), or a placebo for 30 days in a 2:1 ratio.

View Article and Find Full Text PDF

In this study, we evaluated the impact of yeast cell wall prebiotics and multispecies probiotics on the gut microbiota, immune response, and growth performance of weaned piglets, as alternatives to antibiotics as growth promoters (AGPs). A randomized complete block design was employed, involving 160 piglets divided into four treatment groups during the nursery phase. The treatments applied throughout the experimental period were as follows: CONT+ = basal diet with halquinol (AGP); YCW = basal diet with yeast cell wall (cell wall of Saccharomyces cerevisiae yeast); SIM+ = basal diet with yeast cell wall + multispecies probiotic (Bacillus subtilis (2.

View Article and Find Full Text PDF

Metabolic exchanges between strains in gut microbial communities shape their composition and interactions with the host. This study investigates the metabolic synergy between potential probiotic bacteria and Saccharomyces boulardii, aiming to enhance anti-inflammatory effects within a multi-species probiotic community. By screening a collection of 85 potential probiotic bacterial strains, we identified two strains that demonstrated a synergistic relationship with S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!