Profiling of Volatile Organic Compounds from Four Plant Growth-Promoting Rhizobacteria by SPME-GC-MS: A Metabolomics Study.

Metabolites

Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa.

Published: August 2022

The rhizosphere microbiome is a major determinant of plant health. Plant-beneficial or plant growth-promoting rhizobacteria (PGPR) influence plant growth, plant development and adaptive responses, such as induced resistance/priming. These new eco-friendly choices have highlighted volatile organic compounds (biogenic VOCs) as a potentially inexpensive, effective and efficient substitute for the use of agrochemicals. Secreted bacterial VOCs are low molecular weight lipophilic compounds with a low boiling point and high vapor pressures. As such, they can act as short- or long-distance signals in the rhizosphere, affecting competing microorganisms and impacting plant health. In this study, secreted VOCs from four PGPR strains ( (N19) (N04) (T19) and (T22)) were profiled by solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC-MS) combined with a multivariate data analysis. Metabolomic profiling with chemometric analyses revealed novel data on the composition of the secreted VOC blends of the four PGPR strains. Of the 121 annotated metabolites, most are known as bioactives which are able to affect metabolism in plant hosts. These VOCs belong to the following classes: alcohols, aldehydes, ketones, alkanes, alkenes, acids, amines, salicylic acid derivatives, pyrazines, furans, sulfides and terpenoids. The results further demonstrated the presence of species-specific and strain-specific VOCs, characterized by either the absence or presence of specific VOCs in the different strains. These molecules could be further investigated as biomarkers for the classification of an organism as a PGPR and selection for agricultural use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414699PMC
http://dx.doi.org/10.3390/metabo12080763DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
plant growth-promoting
8
growth-promoting rhizobacteria
8
plant health
8
pgpr strains
8
plant
7
vocs
6
profiling volatile
4
compounds plant
4

Similar Publications

Influence of forage-to-concentrate ratio on the effects of a radiata pine bark extract on methane production and fermentation using the rumen simulation technique.

Animal

December 2024

Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:

Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services.

Glob Chang Biol

January 2025

Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.

Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

This study investigated the psychophysiological and metabolomic changes during horticultural activities involving the inhalation of volatile organic compounds (VOCs) in individuals experiencing depressive mood based on the presence or absence of the soil microbe Streptomyces rimosus, which emits VOCs. Thirty participants met the specific depression and anxiety criteria and engaged in horticultural activities using soil inoculated with S. rimosus (experimental group) or medium (control group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!