A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

miR-1/AMPK-Mediated Glucose and Lipid Metabolism under Chronic Hypothermia in the Liver of Freshwater Drum, . | LitMetric

Our previous study demonstrated that low temperature could induce hepatic inflammation and suppress the immune and oxidation resistance of freshwater drum. However, the metabolism, especially the glucose and lipid metabolism involved, is poorly studied. To further explore the chronic hypothermia response of freshwater drum, an 8-day hypothermia experiment was conducted at 10 °C to investigate the effect of chronic hypothermia on glucose and lipid metabolism via biochemical and physiological indexes, and metabolic enzyme activities, miRNAs and mRNA-miRNA integrate analysis in the liver. Plasma and hepatic biochemical parameters reveal chronic hypothermia-promoted energy expenditure. Metabolic enzyme levels uncover that glycolysis was enhanced but lipid metabolism was suppressed. Differentially expressed miRNAs induced by hypothermia were mainly involved in glucose and lipid metabolism, programmed cell death, disease, and cancerization. Specifically, KEGG enrichment indicates that AMPK signaling was dysregulated. mRNA-miRNA integrated analysis manifests miR-1 and AMPK, which were actively co-related in the regulatory network. Furthermore, transcriptional expression of key genes demonstrates hypothermia-activated AMPK signaling by miR-1 and subsequently inhibited the downstream glucogenic and glycogenic gene expression and gene expression of fatty acid synthesis. However, glycogenesis was alleviated to the control level while fatty acid synthesis was still suppressed at 8 d. Meanwhile, the gene expressions of glycolysis and fatty acid oxidation were augmented under hypothermia. In conclusion, these results suggest that miR-1/AMPK is an important target for chronic hypothermia control. It provides a theoretical basis for hypothermia resistance on freshwater drum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415528PMC
http://dx.doi.org/10.3390/metabo12080697DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
20
glucose lipid
16
chronic hypothermia
16
freshwater drum
16
fatty acid
12
hypothermia
8
resistance freshwater
8
metabolic enzyme
8
ampk signaling
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!