At present, the study of the neurotropic activity of polyunsaturated fatty acid ethanolamides (N-acylethanolamines) is becoming increasingly important. N-docosahexaenoylethanolamine (synaptamide, DHEA) is a highly active metabolite of docosahexaenoic acid (DHA) with neuroprotective, synaptogenic, neuritogenic, and anti-inflammatory properties in the nervous system. Synaptamide tested in the present study was obtained using a chemical modification of DHA isolated from squid liver. The results of this study demonstrate the effects of synaptamide on the astroglial response to injury in the acute (1 day) and chronic (7 days) phases of mild traumatic brain injury (mTBI) development. HPLC-MS study revealed several times increase of synaptamide concentration in the cerebral cortex and serum of experimental animals after subcutaneous administration (10 mg/kg/day). Using immunohistochemistry, it was shown that synaptamide regulates the activation of GFAP- and S100β-positive astroglia, reduce nNOS-positive immunostaining, and stimulates the secretion of neurotrophin BDNF. Dynamics of superoxide dismutase production in synaptamide treatment confirm the antioxidant efficacy of the test compound. We found a decrease in TBI biomarkers such as GFAP, S100β, and IL-6 in the blood serum of synaptamide-treated experimental animals using Western blot analysis. The results indicate the high therapeutic potential of synaptamide in reducing the severity of the brain damage consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410022PMC
http://dx.doi.org/10.3390/md20080538DOI Listing

Publication Analysis

Top Keywords

synaptamide
8
mild traumatic
8
traumatic brain
8
brain injury
8
experimental animals
8
synaptamide modulates
4
modulates astroglial
4
astroglial activity
4
activity mild
4
study
4

Similar Publications

Traumatic brain injuries (TBI) of varying severity are becoming more frequent all over the world. The process of neuroinflammation, in which macrophages and microglia are key players, underlies all types of brain damage. The present study focuses on evaluating the therapeutic potential of N-docosahexaenoylethanolamine (DHEA, synaptamide), which is an endogenous metabolite of docosahexaenoic acid in traumatic brain injury.

View Article and Find Full Text PDF
Article Synopsis
  • - The Eilat Conference on New Antiepileptic Drugs and Devices, held in Madrid in May 2024, served as a platform for discussing recent advances in therapies for epilepsy and seizures involving scientists, clinicians, and health professionals.
  • - Key treatments showcased included AMT-260 (gene therapy for drug-resistant seizures), BHV-7000 (for focal epilepsy), and several others targeting conditions like Dravet syndrome and Lennox-Gastaut syndrome.
  • - The conference highlighted innovative drug candidates aimed at improving outcomes for patients with epilepsy, with a focus on drug-resistant cases and mechanisms like potassium channel activation and GABAergic neuron modulation.
View Article and Find Full Text PDF

The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI.

View Article and Find Full Text PDF

N-docosahexaenoylethanolamine, or synaptamide, is an endogenous metabolite of docosahexaenoic acid that is known for synaptogenic and neurogenic effects. In our previous studies we have shown that synaptamide attenuates neuropathic pain, facilitates remyelination, and reduces neuroinflammation after the chronic constriction injury (CCI) of the sciatic nerve in rats. In the current study, we show that daily synaptamide administration (4 mg/kg/day) within 14 days post-surgery: (1) decreases micro- and astroglia activity in the dorsal and ventral horns of the lumbar spinal cord; (2) modulates pro-inflammatory (IL1β, IL6) and anti-inflammatory (IL4, IL10) cytokine level in the serum and spinal cord; (3) leads to a rise in synaptamide and anandamide concentration in the spinal cord; (4) enhances IL10, CD206 and N-acylethanolamine-hydrolyzing acid amidase synthesis in macrophage cell culture following LPS-induced inflammation.

View Article and Find Full Text PDF

Background: Neuroinflammation is a widely studied phenomenon underlying various neurodegenerative diseases. Earlier study demonstrated that pharmacological activation of GPR110 in both central and peripheral immune cells cooperatively ameliorates neuroinflammation caused by systemic lipopolysaccharide (LPS) administration. Ethanol consumption has been associated with exacerbation of neurodegenerative and systemic inflammatory conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!