The increased interest in nanomedicine and its applicability for a wide range of biological functions demands the search for raw materials to create nanomaterials. Recent trends have focused on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals have been found in a variety of marine organisms, including invertebrates, marine mammals, fish, algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used for various biological properties. Marine-derived materials, either whole extracts or pure components, are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production, biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and support wound healing. Furthermore, several polymeric materials derived from the marine, such as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle synthesis and its biological applications made from their entire extracts or pure chemicals derived from marine sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409790 | PMC |
http://dx.doi.org/10.3390/md20080527 | DOI Listing |
RSC Adv
January 2025
Research Collaboration Center for Nanocellulose, BRIN-Andalas University Padang 25163 West Sumatera Indonesia.
This study investigates the development and characterization of a novel composite material consisting of polyvinyl alcohol (PVA) integrated with (UG) and zinc oxide (ZnO) as fillers. The synergistic effects of UG and ZnO were investigated, focusing on their ability to enhance the film's properties. UV-vis spectrophotometry demonstrated that the composite film effectively blocked all UV (UV-A and UV-B) and blue light wavelengths.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India. Electronic address:
Conversion of rice straw into nanocellulose offers a sustainable approach to agricultural waste management, yielding an industrially important product with potential applications. This work focuses on effectively extracting pure cellulose from both widely used Basmati and Parmal rice straw (BRS and PRS) using less alkali concentrations (3-5 % NaOH). The process was optimized via Box Behnken design at 90-150 °C temperatures for 90-150 min, which resulted in 88.
View Article and Find Full Text PDFEnviron Health Insights
January 2025
Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana.
Introduction: Access to safe drinking water is crucial for health and survival, yet many developing countries face significant challenges in this regard. In West Africa, rapid urbanisation has outpaced efforts to improve access to potable water, compelling households to rely on private vendors for solutions, particularly through the growing market for sachet water. Widely consumed in Ghana, sachet water has become a convenient and affordable option, with over 37% of the population depending on it.
View Article and Find Full Text PDFPlant Dis
January 2025
Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China;
Chinese yam ( Turcz.), known for its nutrient-rich underground tubers, is both a food source and a traditional Chinese medicinal plant. It offers significant nutritional and medicinal benefits.
View Article and Find Full Text PDFFood Funct
January 2025
Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!