Potential for the Production of Carotenoids of Interest in the Polar Diatom .

Mar Drugs

IRL7266 Takuvik, CNRS (France)/ULaval (Canada), Pavillon Alexandre-Vachon, Université Laval, 1045, av. de la Médecine, Québec, QC G1V 0A6, Canada.

Published: July 2022

Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin-diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized by diatoms (Bacillariophyta). While temperate strains of diatoms have been widely investigated, recent years showed a growing interest in using polar strains, which are better adapted to the natural growth conditions of Nordic countries. The aim of the present study was to explore the potential of the polar diatom in producing Fx and Ddx+Dtx by means of the manipulation of the growth light climate (daylength, light intensity and spectrum) and temperature. We further compared its best capacity to the strongest xanthophyll production levels reported for temperate counterparts grown under comparable conditions. In our hands, the best growing conditions for were a semi-continuous growth at 7 °C and under a 12 h light:12 h dark photoperiod of monochromatic blue light (445 nm) at a PUR of 11.7 μmol photons m s. This allowed the highest Fx productivity of 43.80 µg L day and the highest Fx yield of 7.53 µg Wh, more than two times higher than under 'white' light. For Ddx+Dtx, the highest productivity (4.55 µg L day) was reached under the same conditions of 'white light' and at 0 °C. Our results show that , and potentially other polar diatom strains, are very well suited for Fx and Ddx+Dtx production under conditions of low temperature and light intensity, reaching similar productivity levels as model temperate counterparts such as . The present work supports the possibility of using polar diatoms as an efficient cold and low light-adapted bioresource for xanthophyll pigments, especially usable in Nordic countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409807PMC
http://dx.doi.org/10.3390/md20080491DOI Listing

Publication Analysis

Top Keywords

polar diatom
12
interest polar
8
xanthophyll pigments
8
growing interest
8
nordic countries
8
light intensity
8
temperate counterparts
8
highest productivity
8
µg day
8
polar
5

Similar Publications

Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.

View Article and Find Full Text PDF

Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.

View Article and Find Full Text PDF

Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.

View Article and Find Full Text PDF

Unlabelled: iKaluk, Inuttitut for Arctic charr (), holds significant commercial and cultural value for Inuit communities throughout Nunatsiavut. Studies evaluating iKaluk habitat associations in freshwater are plentiful; however, there is limited information on the ecological makeup and sediment characteristics of anadromous charr habitats in marine environments. This study investigated the benthic associations of Arctic charr during their marine residency period in Nain, Nunatsiavut, using underwater videos, harvester-identified fishing locations, and acoustic telemetry.

View Article and Find Full Text PDF

Structures of PSI-FCPI from Thalassiosira pseudonana grown under high light provide evidence for convergent evolution and light-adaptive strategies in diatom FCPIs.

J Integr Plant Biol

December 2024

Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!