Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mesoporous silica nanoparticles (MSNs) have great potential for applications as a drug delivery system (DDS) due to their unique properties such as large pore size, high surface area, biocompatibility, biodegradability, and stable aqueous dispersion. The MSN-mediated DDS can carry chemotherapeutic agents, optical sensors, photothermal agents, short interfering RNA (siRNA), and gene therapeutic agents. The MSN-assisted imaging techniques are applicable in cancer diagnosis. However, their synthesis via a chemical route requires toxic chemicals and is challenging, time-consuming, and energy-intensive, making the process expensive and non-viable. Fortunately, nature has provided a viable alternative material in the form of biosilica from marine resources. In this review, the applications of biosilica nanoparticles synthesized from marine diatoms in the field of drug delivery, biosensing, imaging agents, and regenerative medicine, are highlighted. Insights into the use of biosilica in the field of DDSs are elaborated, with a focus on different strategies to improve the physico-chemical properties with regards to drug loading and release efficiency, targeted delivery, and site-specific binding capacity by surface functionalization. The limitations, as well as the future scope to develop them as potential drug delivery vehicles and imaging agents, in the overall therapeutic management, are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410069 | PMC |
http://dx.doi.org/10.3390/md20080480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!