Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr01897g | DOI Listing |
ACS Nano
January 2025
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal.
The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides.
View Article and Find Full Text PDFAdv Skin Wound Care
January 2025
At the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States, Adrian Chen, BS, Aleksandra Qilleri, BS, and Timothy Foster, BS, are Medical Students. Amit S. Rao, MD, is Project Manager, Department of Surgery, Wound Care Division, Northwell Wound Healing Center and Hyperbarics, Northwell Health, Hempstead. Sandeep Gopalakrishnan, PhD, MAPWCA, is Associate Professor and Director, Wound Healing and Tissue Repair Analytics Laboratory, School of Nursing, College of Health Professions, University of Wisconsin-Milwaukee. Jeffrey Niezgoda, MD, MAPWCA, is Founder and President Emeritus, AZH Wound Care and Hyperbaric Oxygen Therapy Center, Milwaukee, and President and Chief Medical Officer, WebCME, Greendale, Wisconsin. Alisha Oropallo, MD, is Professor of Surgery, Donald and Barbara Zucker School of Medicine and The Feinstein Institutes for Medical Research, Manhasset New York; Director, Comprehensive Wound Healing Center, Northwell Health; and Program Director, Wound and Burn Fellowship program, Northwell Health.
Generative artificial intelligence (AI) models are a new technological development with vast research use cases among medical subspecialties. These powerful large language models offer a wide range of possibilities in wound care, from personalized patient support to optimized treatment plans and improved scientific writing. They can also assist in efficiently navigating the literature and selecting and summarizing articles, enabling researchers to focus on impactful studies relevant to wound care management and enhancing response quality through prompt-learning iterations.
View Article and Find Full Text PDFSci China Life Sci
December 2024
Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!