Plasticulture, the practice of using plastic materials in agricultural applications, consumes about 6.7 million tons of plastics every year, which is about 2% of the overall global annual plastics production. For different reasons, plastic material used for agriculture is difficult to recycle. Therefore, most of it is either buried in fertile soils, thereby significantly causing deterioration of their properties, or, at best case, end in landfills where its half-life is measured in decades and even centuries. Hence, developing biodegradable plastic materials that are suitable for agricultural applications is a vital and inevitable need for the global human society. In our labs, two types of potentially biodegradable plastic polymer films were prepared and characterized imidazolium in terms of their bio-degradability. In the first approach, polymers made of ionic liquid monomers were prepared using photo radical induced polymerization. The second approach relies on formation of polyethylene-like n-alkane disulfide polymers from 1,ω-di-thiols through thermally activated air oxidation. These two families of materials were tested for their biodegradability in soils by using a simulation system that combines a controlled environment chamber equipped with a respirometer and a proton-transfer-reaction time of flight mass spectrometer (PTR-TOF-MS) system. This system provides a time-dependent and comprehensive fingerprint of volatiles emitted in the degradation process. The results obtained thus far indicate that whereas the ionic-liquid based polymer does not show significant bio-degradability under the test conditions, the building block monomer, 1,10-n-decane dithiol, as well as its disulfide-based polymer, are bio-degradable. The latter reaching, under basic soil conditions and in room temperature, ∼20% degradation within three months. These results suggest that by introduction of disulfide groups into the polyethylene backbone one may be able to render it biodegradable, thus considerably shortening its half-life in soils. Principal component analysis, PCA, of the data about the total volatiles produced during the degradation in soil indicates a distinctive volatile "fingerprint" of the disulfide-based bio-degradable products which comes from the volatile organic compounds portfolio as recorded by the PTR-TOF-MS. The biodegradation volatile fingerprint of this kind of film was different from the "fingerprint" of the soil background which served as a control. These results can help us to better understand and design biodegradable films for agricultural mulching practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393227PMC
http://dx.doi.org/10.3389/fbioe.2022.922974DOI Listing

Publication Analysis

Top Keywords

plastic materials
8
agricultural applications
8
biodegradable plastic
8
quest novel
4
novel bio-degradable
4
bio-degradable plastics
4
agricultural
4
plastics agricultural
4
agricultural field
4
field mulching
4

Similar Publications

Recent developments in alginate-based nanocomposite coatings and films for biodegradable food packaging applications.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:

Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable.

View Article and Find Full Text PDF

The healthcare sector, particularly operating rooms (ORs), generates significant waste, contributing to global environmental pollution. This scoping review aimed to assess global recycling practices in ORs across various surgical specialties, identifying key barriers and strategies for improvement. A comprehensive literature search using PubMed and Embase and PRISMA reporting guidelines yielded 35 studies for inclusion.

View Article and Find Full Text PDF

Background: The rapid growth of aesthetic medicine has led to an increased demand for non-surgical cosmetic procedures in the frontal region of the face. However, alongside this rise in popularity, there is a growing awareness of the potential complications associated with these procedures especially connected with fillers. The intricate vascular anatomy of the forehead, specifically the supratrochlear (STA) and supraorbital (SOA) arteries, poses significant risks if not thoroughly understood.

View Article and Find Full Text PDF

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

Coating Agents for Resin Composites: Effect on Color Stability, Roughness, and Surface Micromorphology Subjected to Brushing Wear.

Oper Dent

January 2025

*Roberta Tarkany Basting, DDS, MSc, PhD, Professor, Restorative Dentistry Department, Faculdade São Leopoldo Mandic, São Paulo, Brazil.

This study evaluated the influence of six resin composite coating agents on color stability and surface roughness after toothbrushing abrasion. Discs (Ø6 mm x 2 mm) of nanofilled resin composite (Filtek Z350XT) were prepared for application of coating agents (n=10): control (absence), two surface sealants (PermaSeal and BisCover LV), two adhesive systems (Scotchbond Multi-Purpose Adhesive/3M Oral Care and Single Bond Universal), and two modeling liquids (Modeling Resin and Composite Wetting Resin). CIELab*, WID, and color change (ΔEab, ΔE00, and ΔWID) were analyzed at baseline, after finishing and polishing, after application of coating agents, after coffee staining (simulating 30 days and one year of staining), and after toothbrushing abrasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!