Neuropathologically, Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta peptide (Aβ) and subsequent formation of the so-called Aβ plaques. Along with neuronal loss, previous studies report white matter anomalies and corpus callosum (CC) atrophy in AD patients. Notably, perturbations in the white matter can be observed years before expected disease onset, suggesting that early stages of disease progression play a role in AD-associated loss of myelin integrity. Through seed-induced deposition of Aβ, we are able to examine alterations of central nervous system (CNS) integrity during the initial stages of plaque formation. In this study, we investigate the impact of Aβ seeding in the CC utilizing various imaging techniques as well as quantitative gene expression analysis and demonstrate that Aβ deposits result in an imbalance of glial cells in the CC. We found increased amounts of phagocytic microglia and reactive astrocytes, while oligodendrocyte progenitor cell (OPC) numbers were reduced. Moreover, white matter aberrations adjacent to the Aβ seeding were observed together with an overall decline in callosal myelination. This data indicate that the initial stages of plaque formation induce oligodendrocyte dysfunction, which might ultimately lead to myelin loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393256PMC
http://dx.doi.org/10.3389/fncel.2022.862918DOI Listing

Publication Analysis

Top Keywords

white matter
16
aβ deposits
8
corpus callosum
8
alzheimer's disease
8
initial stages
8
stages plaque
8
plaque formation
8
aβ seeding
8
6
seed-induced aβ
4

Similar Publications

Objective: To explore whether the inflammatory activity is higher in white matter (WM) tracts disrupted by paramagnetic rim lesions (PRLs) and if inflammation in PRL-disrupted WM tracts is associated with disability in people with multiple sclerosis (MS).

Methods: Forty-four MS patients and 16 healthy controls were included. 18 kDa-translocator protein positron emission tomography (TSPO-PET) with the C-PK11195 radioligand was used to measure the neuroinflammatory activity.

View Article and Find Full Text PDF

F-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.

View Article and Find Full Text PDF

Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners.

View Article and Find Full Text PDF

Neuroprotective Effects of Eugenol Acetate Against Ischemic Stroke.

J Inflamm Res

January 2025

Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.

Objective: To explore the neuroprotective effect of Eugenol Acetate (EA) on post-stroke neuroinflammation and investigate the underlying mechanisms.

Methods: For in vitro experiments, primary microglia were pre-incubated with EA for 2 hours, followed by lipopolysaccharide (LPS) stimulation for 24 hours or Oxygen-Glucose Deprivation (OGD) treatment for 4 hours. Real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to examine the expression levels of inflammatory cytokines in primary microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!