[Hi-Meth: a platform for high-throughput detection of site-specific DNA methylation].

Sheng Wu Gong Cheng Xue Bao

State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, Zhejiang, China.

Published: August 2022

Cytosine methylation is one of the major types of DNA epigenetic modifications and plays an important role in maintaining normal cell function and regulating gene expression. Bisulfite sequencing PCR (BSP) based cloning and sequencing is a general method for detecting DNA methylation at specific sites, which can clarify the methylation status of each CpG site in the target fragment. However, this method requires large amounts of single-clonal sequencing, which is complicated to operate, time consuming and expensive. Therefore, the development of an accurate, efficient and convenient DNA methylation detection technology is of great significance to improve the efficiency of epigenetic research. Based on the high-throughput mutation detection platform Hi-TOM (high-throughput tracking of mutations) developed by our group, we further established a site-specific DNA methylation high-throughput detection platform Hi-Meth (High-throughput Detection of DNA Methylation). After bisulfite treatment of DNA samples, the specific site-specific DNA methylation analysis results could be obtained through the Hi-Meth platform by performing only one round of PCR amplification. Using the Hi-Meth platform, the DNA methylation status of two promoter regions of rice were detected. The DNA methylation results from Hi-Meth were consistent with the results from BSP-based method. Thus, site-specific DNA methylation analysis results could be obtained accurately and conveniently through the Hi-Meth platform. In conclusion, Hi-Meth provides an important methylation detection platform for specific DNA regions, which has important significance for epigenetic research.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.220190DOI Listing

Publication Analysis

Top Keywords

dna methylation
32
site-specific dna
16
high-throughput detection
12
dna
12
detection platform
12
hi-meth platform
12
methylation
11
methylation status
8
methylation detection
8
methylation analysis
8

Similar Publications

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.

View Article and Find Full Text PDF

The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.

View Article and Find Full Text PDF

Neuroendocrine tumors (NET) of the lung constitute a rare entity of primary lung malignancies that often exhibit an indolent clinical course. Epigenetics-related differences have been described previously for lung NET, but the clinical significance remains unclear. In this study, we performed genome-wide methylation analysis using the Infinium MethylationEPIC BeadChip technology on FFPE tissues from lung NET treated at two academic centers.

View Article and Find Full Text PDF

Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!